ﻻ يوجد ملخص باللغة العربية
Analytical study of the rapidity distribution of the final state particles in deep inelastic scattering at small x is presented. We separate and analyse three sources of particle production: fragmentation of the quark-antiquark pair, accompanying coherent soft gluon radiation due to octet color exchange in the t-channel, and fragmentation of gluons that form parton distribution functions. Connection to Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equations and the role of gluon reggezation are also discussed.
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DI
We compute the next-to-leading order (NLO) impact factor for inclusive photon $+$dijet production in electron-nucleus (e+A) deeply inelastic scattering (DIS) at small $x$. An important ingredient in our computation is the simple structure of ``shock
We provide a semi-classical description of the inclusive gluon induced Deep Inelastic Scattering cross section in a way that accounts for the leading powers in both the Regge and Bjorken limits. Our approach thus allows a systematic matching of small
The nuclear modification factor $R_{pA}(p_T)$ provides information on the small-$x$ gluon distribution of a nucleus at hadron colliders. Several experiments have recently measured the nuclear modification factor not only in minimum bias but also for
We present a revision of predictions for nuclear shadowing in deep-inelastic scattering at small Bjorken $x_{Bj}$ corresponding to kinematic regions accessible by the future experiments at electron-ion colliders. The nuclear shadowing is treated with