ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-free bounds for multi-asset options using option-implied information and their exact computation

118   0   0.0 ( 0 )
 نشر من قبل Ariel Neufeld
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider derivatives written on multiple underlyings in a one-period financial market, and we are interested in the computation of model-free upper and lower bounds for their arbitrage-free prices. We work in a completely realistic setting, in that we only assume the knowledge of traded prices for other single- and multi-asset derivatives, and even allow for the presence of bid-ask spread in these prices. We provide a fundamental theorem of asset pricing for this market model, as well as a superhedging duality result, that allows to transform the abstract maximization problem over probability measures into a more tractable minimization problem over vectors, subject to certain constraints. Then, we recast this problem into a linear semi-infinite optimization problem, and provide two algorithms for its solution. These algorithms provide upper and lower bounds for the prices that are $varepsilon$-optimal, as well as a characterization of the optimal pricing measures. These algorithms are efficient and allow the computation of bounds in high-dimensional scenarios (e.g. when $d=60$). Moreover, these algorithms can be used to detect arbitrage opportunities and identify the corresponding arbitrage strategies. Numerical experiments using both synthetic and real market data showcase the efficiency of these algorithms, while they also allow to understand the reduction of model risk by including additional information, in the form of known derivative prices.



قيم البحث

اقرأ أيضاً

Machine learning methods for solving nonlinear partial differential equations (PDEs) are hot topical issues, and different algorithms proposed in the literature show efficient numerical approximation in high dimension. In this paper, we introduce a c lass of PDEs that are invariant to permutations, and called symmetric PDEs. Such problems are widespread, ranging from cosmology to quantum mechanics, and option pricing/hedging in multi-asset market with exchangeable payoff. Our main application comes actually from the particles approximation of mean-field control problems. We design deep learning algorithms based on certain types of neural networks, named PointNet and DeepSet (and their associated derivative networks), for computing simultaneously an approximation of the solution and its gradient to symmetric PDEs. We illustrate the performance and accuracy of the PointNet/DeepSet networks compared to classical feedforward ones, and provide several numerical results of our algorithm for the examples of a mean-field systemic risk, mean-variance problem and a min/max linear quadratic McKean-Vlasov control problem.
We propose three different data-driven approaches for pricing European-style call options using supervised machine-learning algorithms. These approaches yield models that give a range of fair prices instead of a single price point. The performance of the models are tested on two stock market indices: NIFTY$50$ and BANKNIFTY from the Indian equity market. Although neither historical nor implied volatility is used as an input, the results show that the trained models have been able to capture the option pricing mechanism better than or similar to the Black-Scholes formula for all the experiments. Our choice of scale free I/O allows us to train models using combined data of multiple different assets from a financial market. This not only allows the models to achieve far better generalization and predictive capability, but also solves the problem of paucity of data, the primary limitation of using machine learning techniques. We also illustrate the performance of the trained models in the period leading up to the 2020 Stock Market Crash (Jan 2019 to April 2020).
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $varphi(mathbf X)$ where $varphi$ is an aggregation function and $mathbf X = (X_1,dots,X_d)$ is a random vector with known marginal distributions and partially kno wn dependence structure. More specifically, we analyze three types of available information on the dependence structure: First, we consider the case where extreme value information, such as the distributions of partial minima and maxima of $mathbf X$, is available. In order to include this information in the computation of Value-at-Risk bounds, we utilize a reduction principle that relates this problem to an optimization problem over a standard Frechet class, which can then be solved by means of the rearrangement algorithm or using analytical results. Second, we assume that the copula of $mathbf X$ is known on a subset of its domain, and finally we consider the case where the copula of $mathbf X$ lies in the vicinity of a reference copula as measured by a statistical distance. In order to derive Value-at-Risk bounds in the latter situations, we first improve the Frechet--Hoeffding bounds on copulas so as to include this additional information on the dependence structure. Then, we translate the improved Frechet--Hoeffding bounds to bounds on the Value-at-Risk using the so-called improved standard bounds. In numerical examples we illustrate that the additional information typically leads to a significant improvement of the bounds compared to the marginals-only case.
196 - Benjamin Jourdain 2010
Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos and Roberts) and unbiased estimation of the expectation of certain fonctional integrals (Wagner, Beskos et al. and Fearnhead et al.), we apply an exac t simulation based technique for pricing continuous arithmetic average Asian options in the Black and Scholes framework. Unlike existing Monte Carlo methods, we are no longer prone to the discretization bias resulting from the approximation of continuous time processes through discrete sampling. Numerical results of simulation studies are presented and variance reduction problems are considered.
119 - Eduardo Abi Jaber 2020
This paper concerns portfolio selection with multiple assets under rough covariance matrix. We investigate the continuous-time Markowitz mean-variance problem for a multivariate class of affine and quadratic Volterra models. In this incomplete non-Ma rkovian and non-semimartingale market framework with unbounded random coefficients, the optimal portfolio strategy is expressed by means of a Riccati backward stochastic differential equation (BSDE). In the case of affine Volterra models, we derive explicit solutions to this BSDE in terms of multi-dimensional Riccati-Volterra equations. This framework includes multivariate rough Heston models and extends the results of cite{han2019mean}. In the quadratic case, we obtain new analytic formulae for the the Riccati BSDE and we establish their link with infinite dimensional Riccati equations. This covers rough Stein-Stein and Wishart type covariance models. Numerical results on a two dimensional rough Stein-Stein model illustrate the impact of rough volatilities and stochastic correlations on the optimal Markowitz strategy. In particular for positively correlated assets, we find that the optimal strategy in our model is a `buy rough sell smooth one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا