ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact retrospective Monte Carlo computation of arithmetic average Asian options

201   0   0.0 ( 0 )
 نشر من قبل Mohamed Sbai
 تاريخ النشر 2010
  مجال البحث مالية
والبحث باللغة English
 تأليف Benjamin Jourdain




اسأل ChatGPT حول البحث

Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos and Roberts) and unbiased estimation of the expectation of certain fonctional integrals (Wagner, Beskos et al. and Fearnhead et al.), we apply an exact simulation based technique for pricing continuous arithmetic average Asian options in the Black and Scholes framework. Unlike existing Monte Carlo methods, we are no longer prone to the discretization bias resulting from the approximation of continuous time processes through discrete sampling. Numerical results of simulation studies are presented and variance reduction problems are considered.



قيم البحث

اقرأ أيضاً

The time average of geometric Brownian motion plays a crucial role in the pricing of Asian options in mathematical finance. In this paper we consider the asymptotics of the discrete-time average of a geometric Brownian motion sampled on uniformly spa ced times in the limit of a very large number of averaging time steps. We derive almost sure limit, fluctuations, large deviations, and also the asymptotics of the moment generating function of the average. Based on these results, we derive the asymptotics for the price of Asian options with discrete-time averaging in the Black-Scholes model, with both fixed and floating strike.
248 - Hampus Engsner 2021
In this paper we explore ways of numerically computing recursive dynamic monetary risk measures and utility functions. Computationally, this problem suffers from the curse of dimensionality and nested simulations are unfeasible if there are more than two time steps. The approach considered in this paper is to use a Least Squares Monte Carlo (LSM) algorithm to tackle this problem, a method which has been primarily considered for valuing American derivatives, or more general stopping time problems, as these also give rise to backward recursions with corresponding challenges in terms of numerical computation. We give some overarching consistency results for the LSM algorithm in a general setting as well as explore numerically its performance for recursive Cost-of-Capital valuation, a special case of a dynamic monetary utility function.
This paper sets up a methodology for approximately solving optimal investment problems using duality methods combined with Monte Carlo simulations. In particular, we show how to tackle high dimensional problems in incomplete markets, where traditional methods fail due to the curse of dimensionality.
Evaluating moving average options is a tough computational challenge for the energy and commodity market as the payoff of the option depends on the prices of a certain underlying observed on a moving window so, when a long window is considered, the p ricing problem becomes high dimensional. We present an efficient method for pricing Bermudan style moving average options, based on Gaussian Process Regression and Gauss-Hermite quadrature, thus named GPR-GHQ. Specifically, the proposed algorithm proceeds backward in time and, at each time-step, the continuation value is computed only in a few points by using Gauss-Hermite quadrature, and then it is learned through Gaussian Process Regression. We test the proposed approach in the Black-Scholes model, where the GPR-GHQ method is made even more efficient by exploiting the positive homogeneity of the continuation value, which allows one to reduce the problem size. Positive homogeneity is also exploited to develop a binomial Markov chain, which is able to deal efficiently with medium-long windows. Secondly, we test GPR-GHQ in the Clewlow-Strickland model, the reference framework for modeling prices of energy commodities. Finally, we consider a challenging problem which involves double non-Markovian feature, that is the rough-Bergomi model. In this case, the pricing problem is even harder since the whole history of the volatility process impacts the future distribution of the process. The manuscript includes a numerical investigation, which displays that GPR-GHQ is very accurate and it is able to handle options with a very long window, thus overcoming the problem of high dimensionality.
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasevs identity for the CVaR. The convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As a second step, in order to speed up the initial procedure, we propose a recursive importance sampling (I.S.) procedure which induces a significant variance reduction of both VaR and CVaR procedures. This idea, which goes back to the seminal paper of B. Arouna, follows a new approach introduced by V. Lemaire and G. Pag`es. Finally, we consider a deterministic moving risk level to speed up the initialization phase of the algorithm. We prove that the convergence rate of the resulting procedure is ruled by a Central Limit Theorem with minimal variance and its efficiency is illustrated by considering several typical energy portfolios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا