ﻻ يوجد ملخص باللغة العربية
Machine learning methods for solving nonlinear partial differential equations (PDEs) are hot topical issues, and different algorithms proposed in the literature show efficient numerical approximation in high dimension. In this paper, we introduce a class of PDEs that are invariant to permutations, and called symmetric PDEs. Such problems are widespread, ranging from cosmology to quantum mechanics, and option pricing/hedging in multi-asset market with exchangeable payoff. Our main application comes actually from the particles approximation of mean-field control problems. We design deep learning algorithms based on certain types of neural networks, named PointNet and DeepSet (and their associated derivative networks), for computing simultaneously an approximation of the solution and its gradient to symmetric PDEs. We illustrate the performance and accuracy of the PointNet/DeepSet networks compared to classical feedforward ones, and provide several numerical results of our algorithm for the examples of a mean-field systemic risk, mean-variance problem and a min/max linear quadratic McKean-Vlasov control problem.
We prove a rate of convergence for the $N$-particle approximation of a second-order partial differential equation in the space of probability measures, like the Master equation or Bellman equation of mean-field control problem under common noise. The
We consider derivatives written on multiple underlyings in a one-period financial market, and we are interested in the computation of model-free upper and lower bounds for their arbitrage-free prices. We work in a completely realistic setting, in tha
This paper concerns portfolio selection with multiple assets under rough covariance matrix. We investigate the continuous-time Markowitz mean-variance problem for a multivariate class of affine and quadratic Volterra models. In this incomplete non-Ma
What type of delegation contract should be offered when facing a risk of the magnitude of the pandemic we are currently experiencing and how does the likelihood of an exogenous early termination of the relationship modify the terms of a full-commitme
The optimal stochastic control problem with a quadratic cost functional for linear partial differential equations (PDEs) driven by a state-and control-dependent white noise is formulated and studied. Both finite-and infinite-time horizons are conside