ترغب بنشر مسار تعليمي؟ اضغط هنا

A Methodology for Creating AI FactSheets

351   0   0.0 ( 0 )
 نشر من قبل Michael Hind
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As AI models and services are used in a growing number of highstakes areas, a consensus is forming around the need for a clearer record of how these models and services are developed to increase trust. Several proposals for higher quality and more consistent AI documentation have emerged to address ethical and legal concerns and general social impacts of such systems. However, there is little published work on how to create this documentation. This is the first work to describe a methodology for creating the form of AI documentation we call FactSheets. We have used this methodology to create useful FactSheets for nearly two dozen models. This paper describes this methodology and shares the insights we have gathered. Within each step of the methodology, we describe the issues to consider and the questions to explore with the relevant people in an organization who will be creating and consuming the AI facts in a FactSheet. This methodology will accelerate the broader adoption of transparent AI documentation.



قيم البحث

اقرأ أيضاً

Thinking of technology as a design material is appealing. It encourages designers to explore the materials properties to understand its capabilities and limitations, a prerequisite to generative design thinking. However, as a material, AI resists thi s approach because its properties emerge as part of the design process itself. Therefore, designers and AI engineers must collaborate in new ways to create both the material and its application experience. We investigate the co-creation process through a design study with 10 pairs of designers and engineers. We find that design probes with user data are a useful tool in defining AI materials. Through data probes, designers construct designerly representations of the envisioned AI experience (AIX) to identify desirable AI characteristics. Data probes facilitate divergent thinking, material testing, and design validation. Based on our findings, we propose a process model for co-creating AIX and offer design considerations for incorporating data probes in design tools.
Human and AI are increasingly interacting and collaborating to accomplish various complex tasks in the context of diverse application domains (e.g., healthcare, transportation, and creative design). Two dynamic, learning entities (AI and human) have distinct mental model, expertise, and ability; such fundamental difference/mismatch offers opportunities for bringing new perspectives to achieve better results. However, this mismatch can cause unexpected failure and result in serious consequences. While recent research has paid much attention to enhancing interpretability or explainability to allow machine to explain how it makes a decision for supporting humans, this research argues that there is urging the need for both human and AI should develop specific, corresponding ability to interact and collaborate with each other to form a human-AI team to accomplish superior results. This research introduces a conceptual framework called Co-Learning, in which people can learn with/from and grow with AI partners over time. We characterize three key concepts of co-learning: mutual understanding, mutual benefits, and mutual growth for facilitating human-AI collaboration on complex problem solving. We will present proof-of-concepts to investigate whether and how our approach can help human-AI team to understand and benefit each other, and ultimately improve productivity and creativity on creative problem domains. The insights will contribute to the design of Human-AI collaboration.
Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While opening the opaque box is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, w e conduct a mixed-methods study of how two different groups of whos--people with and without a background in AI--perceive different types of AI explanations. These groups were chosen to look at how disparities in AI backgrounds can exacerbate the creator-consumer gap. We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance, and friendliness. Qualitatively, we highlight how the AI background influences each groups interpretations and elucidate why the differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations. Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design interventions to mitigate them. By bringing conscious awareness to how and why AI backgrounds shape perceptions of potential creators and consumers in XAI, our work takes a formative step in advancing a pluralistic Human-centered Explainable AI discourse.
As the field of Spoken Dialogue Systems and Conversational AI grows, so does the need for tools and environments that abstract away implementation details in order to expedite the development process, lower the barrier of entry to the field, and offe r a common test-bed for new ideas. In this paper, we present Plato, a flexible Conversational AI platform written in Python that supports any kind of conversational agent architecture, from standard architectures to architectures with jointly-trained components, single- or multi-party interactions, and offline or online training of any conversational agent component. Plato has been designed to be easy to understand and debug and is agnostic to the underlying learning frameworks that train each component.
The advent of artificial intelligence (AI) and machine learning (ML) bring human-AI interaction to the forefront of HCI research. This paper argues that games are an ideal domain for studying and experimenting with how humans interact with AI. Throug h a systematic survey of neural network games (n = 38), we identified the dominant interaction metaphors and AI interaction patterns in these games. In addition, we applied existing human-AI interaction guidelines to further shed light on player-AI interaction in the context of AI-infused systems. Our core finding is that AI as play can expand current notions of human-AI interaction, which are predominantly productivity-based. In particular, our work suggests that game and UX designers should consider flow to structure the learning curve of human-AI interaction, incorporate discovery-based learning to play around with the AI and observe the consequences, and offer users an invitation to play to explore new forms of human-AI interaction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا