ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Origins of Extremely $^{text{13}}C$- and $^{15}N$-enriched Presolar SiC Grains: Novae or Supernovae?

81   0   0.0 ( 0 )
 نشر من قبل Nan Liu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme excesses of $^{13}C$ ($^{12}C$/$^{13}C$<10) and $^{15}N$ ($^{14}N$/$^{15}N$<20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized $^{13}C$- and $^{15}N$-enriched presolar SiC grains ($^{12}C$/$^{13}C$<16 and $^{14}N$/$^{15}N$<~100) from Murchison, and their correlated Mg-Al, S, and Ca-Ti isotope data when available. These grains are enriched in $^{13}C$ and $^{15}N$, but with quite diverse Si isotopic signatures. Four grains with $^{29,30}Si$ excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with $^{30}Si$ excesses and $^{29}Si$ depletions show lower-than-solar $^{34}S$/$^{32}S$ ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also $^{13}C$ enriched, but have a range of higher $^{14}N$/$^{15}N$. We found that $^{15}N$-enriched AB grains (~50<$^{14}N$/$^{15}N$<~100) have distinctive isotopic signatures compared to putative nova grains, such as higher $^{14}N$/$^{15}N$, lower $^{26}Al$/$^{27}Al$, and lack of $^{30}Si$ excess, indicating weaker proton-capture nucleosynthetic environments.

قيم البحث

اقرأ أيضاً

We report Mo isotopic compositions of 37 presolar SiC grains of types Y (19) and Z (18), rare types commonly argued to have formed in lower-than-solar metallicity asymptotic giant branch (AGB) stars. Direct comparison of the Y and Z grain data with d ata for mainstream grains from AGB stars of close-to-solar metallicity demonstrates that the three types of grains have indistinguishable Mo isotopic compositions. We show that the Mo isotope data can be used to constrain the maximum stellar temperatures (TMAX) during thermal pulses in AGB stars. Comparison of FRUITY Torino AGB nucleosynthesis model calculations with the grain data for Mo isotopes points to an origin from low-mass (~1.5-3 Msun) rather than intermediate-mass (>3-~9 Msun) AGB stars. Because of the low efficiency of 22Ne({alpha},n)25Mg at the low TMAX values attained in low-mass AGB stars, model calculations cannot explain the large 30Si excesses of Z grains as arising from neutron capture, so these excesses remain a puzzle at the moment.
Isotope ratios can be measured in presolar SiC grains from ancient Asymptotic Giant Branch (AGB) stars at permil-level (0.1%) precision. Such precise grain data permit derivation of more stringent constraints and calibrations on mixing efficiency in AGB models than traditional spectroscopic observations. In this paper we compare SiC heavy-element isotope ratios to a new series of FRUITY models that include the effects of mixing triggered by magnetic fields. Based on 2D and 3D simulations available in the literature, we propose a new formulation, upon which the general features of mixing induced by magnetic fields can be derived. The efficiency of such a mixing, on the other hand, relies on physical quantities whose values are poorly constrained. We present here our calibration by comparing our model results with the heavy-element isotope data of presolar SiC grains from AGB stars. We demonstrate that the isotopic compositions of all measured elements (Ni, Sr, Zr, Mo, Ba) can be simultaneously fitted by adopting a single magnetic field configuration in our new FRUITY models.
We identify three isotopic tracers that can be used to constrain the $^{13}C$-pocket and show the correlated isotopic ratios of Sr and Ba in single mainstream presolar SiC grains. These newly measured data can be explained by postprocess AGB model ca lculations with large $^{13}C$-pockets with a range of relatively low $^{13}C$ concentrations, which may suggest that multiple mixing processes contributed to the $^{13}C$-pocket formation in parent AGB stars.
Measurements of sulphur isotopes in presolar grains can help to identify the astrophysical sites in which these grains were formed. A more precise thermonuclear rate of the 33S(p,gamma)34Cl reaction is required, however, to assess the diagnostic abil ity of sulphur isotopic ratios. We have studied the 33S(3He,d)34Cl proton-transfer reaction at 25 MeV using a high-resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Deuteron spectra were measured at ten scattering angles between 10 and 55 degrees. Twenty-four levels in 34Cl over Ex = 4.6 - 5.9 MeV were observed, including three levels for the first time. Proton spectroscopic factors were extracted for the first time for levels above the 33S+p threshold, spanning the energy range required for calculations of the thermonuclear 33S(p,gamma)34Cl rate in classical nova explosions. We have determined a new 33S(p,gamma)34Cl rate using a Monte Carlo method and have performed new hydrodynamic nova simulations to determine the impact on nova nucleosynthesis of remaining nuclear physics uncertainties in the reaction rate. We find that these uncertainties lead to a factor of less than 5 variation in the 33S(p,gamma)34Cl rate over typical nova peak temperatures, and variation in the ejected nova yields of S--Ca isotopes by less than 20%. In particular, the predicted 32S/33S ratio is 110 - 130 for the nova model considered, compared to 110 - 440 with previous rate uncertainties. As recent type II supernova models predict ratios of 130 - 200, the 32S/33S ratio may be used to distinguish between grains of nova and supernova origin.
Among presolar materials recovered in meteorites, abundant SiC and Al$_{2}$O$_{3}$ grains of AGB origins were found. They showed records of C, N, O, $^{26}$Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis mo dels for AGB stars cite{zin,gal}. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called {it mainstream} ones), we mention a large range of $^{14}$N/$^{15}$N ratios, extending below the solar value cite{mar}, and $^{12}$C/$^{13}$C ratios $gtrsim$ 30. Other classes of grains, instead, display low carbon isotopic ratios ($gtrsim 10$) and a huge dispersion for N isotopes, with cases of large $^{15}$N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al$_{2}$O$_{3}$ crystals. Here, the oxygen isotopes and the content in $^{26}$Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا