ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpreting LIGO/Virgo Mass-Gap events as lensed Neutron Star-Black Hole binaries

120   0   0.0 ( 0 )
 نشر من قبل Jose M. Diego Rodriguez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational lensing allows the detection of binary black holes (BBH) at cosmological distances with chirp masses that appear to be enhanced by $1+z$ in the range $1<z<4$, in good agreement with the reported BBH masses. We propose this effect also accounts for the puzzling mass gap events (MG) newly reported by LIGO/Virgo, as distant, lensed NSBH events with $1<z<4$. The fitted mass of the neutron star member becomes $(1+z)times 1.4M_odot$, and is therefore misclassified as a low mass black hole. In this way, we derive a redshift of $zsimeq 3.5$ and $zsimeq 1.0$ for two newly reported mass asymmetric events GW190412 & GW190814, by interpreting them as lensed NSBH events, comprising a stellar mass black hole and neutron star. Over the past year an additional 31 BBH events and 5 MG events have been reported with high probability ($>95%$), from which we infer a factor $simeq 5$ higher intrinsic rate of NSBH events than BBH events, reflecting a higher proportion of neutron stars formed by early star formation. We predict a distinctive locus for lensed NSBH events in the observed binary mass plane, spanning $1<z<4$ with a narrow mass ratio, $q simeq 0.2$, that can be readily tested when the waveform data are unlocked. All such events may show disrupted NS emission and are worthy of prompt follow-up as the high lensing magnification means EM detections are not prohibitive despite the high redshifts that we predict. Such lensed NSBH events provide an exciting prospect of directly charting the history of coalescing binaries via the cosmological redshift of their waveforms, determined relative to the characteristic mass of the neutron star member.



قيم البحث

اقرأ أيضاً

The detection of GW170817 and the identification of its host galaxy have allowed for the first standard-siren measurement of the Hubble constant, with an uncertainty of $sim 14%$. As more detections of binary neutron stars with redshift measurement a re made, the uncertainty will shrink. The dominating factors will be the number of joint detections and the uncertainty on the luminosity distance of each event. Neutron star black hole mergers are also promising sources for advanced LIGO and Virgo. If the black hole spin induces precession of the orbital plane, the degeneracy between luminosity distance and the orbital inclination is broken, leading to a much better distance measurement. In addition neutron star black hole sources are observable to larger distances, owing to their higher mass. Neutron star black holes could also emit electromagnetic radiation: depending on the black hole spin and on the mass ratio, the neutron star can be tidally disrupted resulting in electromagnetic emission. We quantify the distance uncertainty for a wide range of black hole mass, spin and orientations and find that the 1-$sigma$ statistical uncertainty can be up to a factor of $sim 10$ better than for a non-spinning binary neutron star merger with the same signal-to-noise ratio. The better distance measurement, the larger gravitational-wave detectable volume, and the potentially bright electromagnetic emission, imply that spinning black hole neutron star binaries can be the optimal standard siren sources as long as their astrophysical rate is larger than $O(10)$ Gpc$^{-3}$yr$^{-1}$, a value allowed by current astrophysical constraints.
183 - C. Reisswig 2013
We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dyn amical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z>10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10^4-10^6 Msol. The remnant is rapidly spinning with dimensionless spin a^*=0.9. The surrounding accretion disk contains ~10% of the initial mass.
We identify a binary black hole (BBH) merger that appears to be multiply lensed by an intervening galaxy. The LIGO/Virgo events GW170809 and GW170814 have indistinguishable waveforms separated by 5 days, and overlap on the sky within the 90% credible region. Their strain amplitudes are also similar, implying a modest relative magnification ratio, as expected for a pair of lensed gravitational waves. The phase of the two events is also consistent with being the same, adding more evidence in support of both events originating from the same BBH merger. The difference in the published inferred distances of each event can then be interpreted as following from their different magnifications. The observed chirp masses of both events are also similar, as expected for a pair of lensed events, with a common detected value of $29.1^{+1.3}_{-1.0}M_{odot}$, lying at the peak of the observed distribution of chirp masses. We infer this case is a prototypical example of a lensed event that supports our lensing prediction cite{Broadhurst2018} according to which, cosmologically distant, magnified BBH comprise most of the LIGO/Virgo events with chirp masses enhanced above $simeq 15M_{odot}$ by the cosmological expansion. From our predictions we estimate an intrinsic, unlensed, chirp mass of $simeq 10-12 M_odot$, with a source redshift in the range $0.9<z<2.5$. We also outline a joint analysis over all baseline permutations that can stringently test our lensing interpretation of these two events. More generally, lensed events effectively multiply the number of baseline permutations and motivates the use of more interferometers for round the clock coverage of all repeat events of a given source, in order to maximise the orbital details and sky localization of lensed BBH sources.
Gravitational waves can be focussed by the gravity of an intervening galaxy, just like light, thereby magnifying binary merging events in the far Universe. High magnification by galaxies is found to be responsible for the brightest sources detected i n sky surveys, but the low angular resolution of LIGO/Virgo is insufficient to check this lensing possibility directly. Here we find that the first six binary black hole (BBH) merging events reported by LIGO/Virgo show clear evidence for lensing in the plane of observed mass and source distance. The four lowest frequency events follow an apparent locus in this plane, which we can reproduce by galaxy lensing, where the higher the magnification, the generally more distant the source so the wave train is stretched more by the Universal expansion, by factors of 2-4. This revises the reported BBH distances upwards by an order of magnitude, equal to the square root of the magnification. Furthermore, the reported black hole masses must be decreased by 2-4 to counter the larger stretch factor, since the orbital frequency is used to derive the black hole masses. This lowers the masses to 5-15 solar masses, well below the puzzlingly high values of 20-35 solar masses otherwise estimated, with the attraction of finding agreement in mass with black holes orbiting stars in our own Galaxy, thereby implying a stellar origin for the low frequency events in the far Universe. We also show that the other two BBH events of higher frequency detected by LIGO/VIRGO, lie well below the lensing locus, consistent with being nearby and unlensed. If this apparent division between local and distant lensed events is reinforced by new detections then the spins and masses of stellar black holes can be compared over a timespan of 10 billion years by LIGO/Virgo.
Inspirals and mergers of black hole (BHs) and/or neutron star (NSs) binaries are expected to be abundant sources for ground-based gravitational-wave (GW) detectors. We assess the capabilities of Advanced LIGO and Virgo to measure component masses usi ng inspiral waveform models including spin-precession effects using a large ensemble of GW sources {bf randomly oriented and distributed uniformly in volume. For 1000 sources this yields signal-to-noise ratios between 7 and 200}. We make quantitative predictions for how well LIGO and Virgo will distinguish between BHs and NSs and appraise the prospect of using LIGO/Virgo observations to definitively confirm, or reject, the existence of a putative mass gap between NSs ($mleq3 M_odot$) and BHs ($mgeq 5 M_odot$). We find sources with the smaller mass component satisfying $m_2 lesssim1.5 M_odot$ to be unambiguously identified as containing at least one NS, while systems with $m_2gtrsim6 M_odot$ will be confirmed binary BHs. Binary BHs with $m_2<5 M_odot$ (i.e., in the gap) cannot generically be distinguished from NSBH binaries. High-mass NSs ($2<m<3$ $M_odot$) are often consistent with low-mass BH ($m<5 M_odot$), posing a challenge for determining the maximum NS mass from LIGO/Virgo observations alone. Individual sources will seldom be measured well enough to confirm objects in the mass gap and statistical inferences drawn from the detected population will be strongly dependent on the underlying distribution. If nature happens to provide a mass distribution with the populations relatively cleanly separated in chirp mass space, as some population synthesis models suggest, then NSs and BHs are more easily distinguishable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا