ﻻ يوجد ملخص باللغة العربية
Gravitational waves can be focussed by the gravity of an intervening galaxy, just like light, thereby magnifying binary merging events in the far Universe. High magnification by galaxies is found to be responsible for the brightest sources detected in sky surveys, but the low angular resolution of LIGO/Virgo is insufficient to check this lensing possibility directly. Here we find that the first six binary black hole (BBH) merging events reported by LIGO/Virgo show clear evidence for lensing in the plane of observed mass and source distance. The four lowest frequency events follow an apparent locus in this plane, which we can reproduce by galaxy lensing, where the higher the magnification, the generally more distant the source so the wave train is stretched more by the Universal expansion, by factors of 2-4. This revises the reported BBH distances upwards by an order of magnitude, equal to the square root of the magnification. Furthermore, the reported black hole masses must be decreased by 2-4 to counter the larger stretch factor, since the orbital frequency is used to derive the black hole masses. This lowers the masses to 5-15 solar masses, well below the puzzlingly high values of 20-35 solar masses otherwise estimated, with the attraction of finding agreement in mass with black holes orbiting stars in our own Galaxy, thereby implying a stellar origin for the low frequency events in the far Universe. We also show that the other two BBH events of higher frequency detected by LIGO/VIRGO, lie well below the lensing locus, consistent with being nearby and unlensed. If this apparent division between local and distant lensed events is reinforced by new detections then the spins and masses of stellar black holes can be compared over a timespan of 10 billion years by LIGO/Virgo.
The LIGO and Virgo Interferometers have so far provided 11 gravitational-wave (GW) observations of black-hole binaries. Similar detections are bound to become very frequent in the near future. With the current and upcoming wealth of data, it is possi
Gravitational lensing allows the detection of binary black holes (BBH) at cosmological distances with chirp masses that appear to be enhanced by $1+z$ in the range $1<z<4$, in good agreement with the reported BBH masses. We propose this effect also a
Adopting a binned method, we model-independently reconstruct the mass function of primordial black holes (PBHs) from GWTC-2 and find that such a PBH mass function can be explained by a broad red-tilted power spectrum of curvature perturbations. Even
The black holes detected by current and future interferometers can have diverse origins. Their expected mass and spin distributions depend on the specifics of the formation mechanisms. When a physically motivated prior distribution is used in a Bayes
We analyse the LIGO-Virgo data, including the recently released GWTC-2 dataset, to test a hypothesis that the data contains more than one population of black holes. We perform a maximum likelihood analysis including a population of astrophysical blac