ﻻ يوجد ملخص باللغة العربية
We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z>10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10^4-10^6 Msol. The remnant is rapidly spinning with dimensionless spin a^*=0.9. The surrounding accretion disk contains ~10% of the initial mass.
Pulsar timing arrays (PTAs) are expected to detect gravitational waves (GWs) from individual low-redshift (z<1.5) compact supermassive (M>10^9 Msun) black hole (SMBH) binaries with orbital periods of approx. 0.1 - 10 yrs. Identifying the electromagne
Pulsar timing observations are used to place constraints on the rate of coalescence of supermassive black-hole (SMBH) binaries as a function of mass and redshift. In contrast to the indirect constraints obtained from other techniques, pulsar timing o
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nucle
In this paper, we explore the mechanisms that regulate the formation and evolution of stellar black hole binaries (BHBs) around supermassive black holes (SMBHs). We show that dynamical interactions can efficiently drive in-situ BHB formation if the S
Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a modular analytic model to determine the likelihood for detection of SBHBs by ongoing spectroscopic surveys. The model combines the parametrized r