ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Methanol Maser Flares in G107.298+5.63 andS255-NIRS3

94   0   0.0 ( 0 )
 نشر من قبل Sandra Etoka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A 3D maser model has been used to perform an inverse problem on the light curves from three high-amplitude maser flares, selected on the basis of contemporaneous infra-red observations. Plots derived from the model recover the size of the maser cloud, and two parameters linked to saturation, from three observational properties of the light curve. Recovered sizes are consistent with independent interferometric measurements. Maser objects transition between weak and moderate saturation during a flare.



قيم البحث

اقرأ أيضاً

331 - M. Szymczak , M. Olech , P. Wolak 2016
Methanol and water vapour masers are signposts of early stages of high-mass star formation but it is generally thought that due to different excitation processes they probe distinct parts of stellar environments. Here we present observations of the i ntermediate-mass young stellar object G107.298+5.639, revealing for the first time that 34.4 d flares of the 6.7 GHz methanol maser emission alternate with flares of individual features of the 22 GHz water maser. High angular resolution data reveal that a few components of both maser species showing periodic behaviour coincide in position and velocity and all the periodic water maser components appear in the methanol maser region of size of 360 au. The maser flares could be caused by variations in the infrared radiation field induced by cyclic accretion instabilities in a circumstellar or protobinary disc. The observations do not support either the stellar pulsations or the seed photon flux variations as the underlying mechanisms of the periodicity in the source.
G111.256-0.770 is a high-mass young stellar object associated with a weak 6.7 GHz methanol maser showing strong variability. We present results of a multi-epoch monitoring program of the target, conducted with the Torun 32 m telescope for more than a decade. We found that the isotropic maser luminosity varied by a factor 16 on a timescale of 5-6 yr and individual features showed small amplitude short-lived (about 0.2 yr) bursts superimposed on higher amplitude slow (>5 yr) variations.
302 - H. M. de Villiers 2014
We have selected the positions of 54 6.7GHz methanol masers from the Methanol Multibeam Survey catalogue, covering a range of longitudes between $20^{circ}$ and $34^{circ}$ of the Galactic Plane. These positions were mapped in the J=3-2 transition of both the $rm{^{13}CO}$ and $rm{C^{18}O}$ lines. A total of 58 $rm{^{13}CO}$ emission peaks are found in the vicinity of these maser positions. We search for outflows around all $rm{^{13}CO}$ peaks, and find evidence for high-velocity gas in all cases, spatially resolving the red and blue outflow lobes in 55 cases. Of these sources, 44 have resolved kinematic distances, and are closely associated with the 6.7GHz masers, a sub-set referred to as Methanol Maser Associated Outflows (MMAOs). We calculate the masses of the clumps associated with each peak using 870 $rm{mu m}$ continuum emission from the ATLASGAL survey. A strong correlation is seen between the clump mass and both outflow mass and mechanical force, lending support to models in which accretion is strongly linked to outflow. We find that the scaling law between outflow activity and clump masses observed for low-mass objects, is also followed by the MMAOs in this study, indicating a commonality in the formation processes of low-mass and high-mass stars.
We report the detection of new 12.178, 12.229, 20.347, and 23.121 GHz methanol masers in the massive star-forming region G358.93-0.03, which are flaring on similarly short timescales (days) as the 6.668 GHz methanol masers also associated with this s ource. The brightest 12.178 GHz channel increased by a factor of over 700 in just 50 d. The masers found in the 12.229 and 20.347 GHz methanol transitions are the first ever reported and this is only the fourth object to exhibit associated 23.121 GHz methanol masers. The 12.178 GHz methanol maser emission appears to have a higher flux density than that of the 6.668 GHz emission, which is unusual. No associated near-infrared flare counterpart was found, suggesting that the energy source of the flare is deeply embedded.
78 - M. D. Gray , S. Etoka , A.Travis 2020
We simulate maser flares by varying either the pump rate or the background level of radiation in a 3D model of a maser cloud. We investigate the effect of different cloud shapes, saturation levels and viewpoints. Results are considered for clouds wit h both uniform and internally variable unsaturated inversion. Pumping and background variations are represented by several different driving functions, some of which are light curves drawn from observations. We summarise the pumping variability results in terms of three observable parameters, the maximum flux density achieved, a variability index and duty cycle. We demonstrate typical ranges of the flux density that may result from viewing an aspherical object from random viewpoints. The best object for a flare is a prolate cloud, viewed close to its long axis and driven from unsaturated conditions to at least modest saturation. Results for variation of the background level are qualitatively different from the variable pumping results in that they tend to produce short intervals of low flux density under conditions of moderate saturation and sufficient variability to be consistent with strong flaring. Variable background models typically have a significantly higher duty cycle than those with variable pumping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا