ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of periodic and alternating flares of the methanol and water masers in G107.298+5.639

332   0   0.0 ( 0 )
 نشر من قبل Szymczak Marian
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Methanol and water vapour masers are signposts of early stages of high-mass star formation but it is generally thought that due to different excitation processes they probe distinct parts of stellar environments. Here we present observations of the intermediate-mass young stellar object G107.298+5.639, revealing for the first time that 34.4 d flares of the 6.7 GHz methanol maser emission alternate with flares of individual features of the 22 GHz water maser. High angular resolution data reveal that a few components of both maser species showing periodic behaviour coincide in position and velocity and all the periodic water maser components appear in the methanol maser region of size of 360 au. The maser flares could be caused by variations in the infrared radiation field induced by cyclic accretion instabilities in a circumstellar or protobinary disc. The observations do not support either the stellar pulsations or the seed photon flux variations as the underlying mechanisms of the periodicity in the source.

قيم البحث

اقرأ أيضاً

A 3D maser model has been used to perform an inverse problem on the light curves from three high-amplitude maser flares, selected on the basis of contemporaneous infra-red observations. Plots derived from the model recover the size of the maser cloud , and two parameters linked to saturation, from three observational properties of the light curve. Recovered sizes are consistent with independent interferometric measurements. Maser objects transition between weak and moderate saturation during a flare.
As a product of the maser monitoring program with the 26m telescope of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), we present an unprecedented, contemporaneous flaring event of 10 maser transitions in hydroxyl, methanol, and water that began in 2015 January in the massive star-forming region NGC6334I in the velocity range -10 to -2 km/s. The 6.7 GHz methanol and 22.2 GHz water masers began flaring within 22 days of each other, while the 12.2 GHz methanol and 1665 MHz hydroxyl masers flared 80 and 113 days later respectively. The 1665 MHz, 6.7 GHz, and 22.2 GHz masers have all remained in their flared state for nearly 3 years. The brightest flaring components increased by factors of 66, 21, 26, and 20 in the 12.2 and 6.7 GHz methanol, 1665 MHz hydroxyl and 22.2 GHz water maser transitions respectively; some weaker components increased by up to a factor of 145. We also report new maser emission in the 1720, 6031, and 6035 MHz OH lines and the 23.1 GHz methanol line, along with the detection of only the fifth 4660 MHz OH maser. We note the correlation of this event with the extraordinary (sub)millimeter continuum outburst from the massive protostellar system NGC6334I-MM1 and discuss the implications of the observed time lags between different maser velocity components on the nature of the outburst. Finally, we identify two earlier epoch maser flaring events likely associated with this object, which suggest a recurring accretive phenomenon that generates powerful radiative outbursts.
124 - David A. Neufeld 2017
We report the discovery of water maser emission at frequencies above 1 THz. Using the GREAT instrument on SOFIA, we have detected emission in the 1.296411 THz 8(27)-7(34) transition of water toward three oxygen-rich evolved stars: W Hya, U Her, and V Y CMa. An upper limit on the 1.296 THz line flux was obtained toward R Aql. Near-simultaneous observations of the 22.23508 GHz 6(16)-5(23) water maser transition were carried out towards all four sources using the Effelsberg 100m telescope. The measured line fluxes imply 22 GHz / 1.296 THz photon luminosity ratios of 0.012, 0.12, and 0.83 respectively for W Hya, U Her, and VY CMa, values that confirm the 22 GHz maser transition to be unsaturated in W Hya and U Her. We also detected the 1.884888 THz 8(45)-7(53) transition toward W Hya and VY CMa, and the 1.278266 THz 7(43)-6(52) transition toward VY CMa. Like the 22 GHz maser transition, all three of the THz emission lines detected here originate from the ortho-H2O spin isomer. Based upon a model for the circumstellar envelope of W Hya, we estimate that stimulated emission is responsible for ~ 85% of the observed 1.296 THz line emission, and thus that this transition may be properly described as a terahertz-frequency maser. In the case of the 1.885 THz transition, by contrast, our W Hya model indicates that the observed emission is dominated by spontaneous radiative decay, even though a population inversion exists.
(Abridged) Astronomical masers have been effective tools to study magnetic fields for many years. In particular, methanol can be used to probe different parts of protostars such as accretion discs and outflows, since it produces one of the strongest and the most commonly observed masers in massive star-forming regions. We investigate the polarization properties of selected methanol maser transitions in light of newly calculated methanol Lande g-factors and considering hyperfine components. We compare our results with previous observations and we evaluate the effect of preferred hyperfine pumping and non-Zeeman effects. We run simulations using the radiative transfer code CHAMP. We find a dependence of linear and circular polarization fractions on the hyperfine transitions. Preferred hyperfine pumping can explain some high levels of linear and circular polarization and some of the peculiar features seen in the S-shape of observed V-profiles. Methanol masers are not significantly affected by non-Zeeman effects. Our models show that for methanol maser emission, both the linear and circular polarization percentages depend on which hyperfine transition is masing and the degree to which it is being pumped. Since non-Zeeman effects become more relevant at high values of brightness temperatures, it is important to obtain good estimates of these quantities and on maser beaming angles. Better constraints on the brightness temperature will help in understand about the extent to which non-Zeeman effects contribute to the observed polarization percentages. In order to detect separate hyperfine components, an intrinsic thermal line width significantly smaller than the hyperfine separation is required.
We present a simultaneous single-dish survey of 22 GHz water maser and 44 GHz and 95 GHz class I methanol masers toward 77 6.7 GHz class II methanol maser sources, which were selected from the Arecibo methanol maser Galactic plane survey (AMGPS) cata log.Water maser emission is detected in 39 (51%) sources, of which 15 are new detections. Methanol maser emission at 44 GHz and 95 GHz is found in 25 (32%) and 19 (25%) sources, of which 21 and 13 sources are newly detected, respectively. We find 4 high-velocity (> 30 km/s) water maser sources, including 3 dominant blue- or redshifted outflows.The 95 GHz masers always appear with the 44 GHz maser emission. They are strongly correlated with 44 GHz masers in velocity, flux density, and luminosity, while they are not correlated with either water or 6.7 GHz class II methanol masers. The average peak flux density ratio of 95 GHz to 44 GHz masers is close to unity, which is two times higher than previous estimates. The flux densities of class I methanol masers are more closely correlated with the associated BGPS core mass than those of water or class II methanol masers. Using the large velocity gradient (LVG) model and assuming unsaturated class I methanol maser emission, we derive the fractional abundance of methanol to be in a range of 4.2*10^-8 to 2.3*10^-6, with a median value of 3.3pm2.7*10^-7.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا