ترغب بنشر مسار تعليمي؟ اضغط هنا

A highly variable methanol maser in G111.256-0.770

167   0   0.0 ( 0 )
 نشر من قبل Micha{\\l} Durjasz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

G111.256-0.770 is a high-mass young stellar object associated with a weak 6.7 GHz methanol maser showing strong variability. We present results of a multi-epoch monitoring program of the target, conducted with the Torun 32 m telescope for more than a decade. We found that the isotropic maser luminosity varied by a factor 16 on a timescale of 5-6 yr and individual features showed small amplitude short-lived (about 0.2 yr) bursts superimposed on higher amplitude slow (>5 yr) variations.



قيم البحث

اقرأ أيضاً

304 - H. M. de Villiers 2014
We have selected the positions of 54 6.7GHz methanol masers from the Methanol Multibeam Survey catalogue, covering a range of longitudes between $20^{circ}$ and $34^{circ}$ of the Galactic Plane. These positions were mapped in the J=3-2 transition of both the $rm{^{13}CO}$ and $rm{C^{18}O}$ lines. A total of 58 $rm{^{13}CO}$ emission peaks are found in the vicinity of these maser positions. We search for outflows around all $rm{^{13}CO}$ peaks, and find evidence for high-velocity gas in all cases, spatially resolving the red and blue outflow lobes in 55 cases. Of these sources, 44 have resolved kinematic distances, and are closely associated with the 6.7GHz masers, a sub-set referred to as Methanol Maser Associated Outflows (MMAOs). We calculate the masses of the clumps associated with each peak using 870 $rm{mu m}$ continuum emission from the ATLASGAL survey. A strong correlation is seen between the clump mass and both outflow mass and mechanical force, lending support to models in which accretion is strongly linked to outflow. We find that the scaling law between outflow activity and clump masses observed for low-mass objects, is also followed by the MMAOs in this study, indicating a commonality in the formation processes of low-mass and high-mass stars.
A 3D maser model has been used to perform an inverse problem on the light curves from three high-amplitude maser flares, selected on the basis of contemporaneous infra-red observations. Plots derived from the model recover the size of the maser cloud , and two parameters linked to saturation, from three observational properties of the light curve. Recovered sizes are consistent with independent interferometric measurements. Maser objects transition between weak and moderate saturation during a flare.
We report the detection of new 12.178, 12.229, 20.347, and 23.121 GHz methanol masers in the massive star-forming region G358.93-0.03, which are flaring on similarly short timescales (days) as the 6.668 GHz methanol masers also associated with this s ource. The brightest 12.178 GHz channel increased by a factor of over 700 in just 50 d. The masers found in the 12.229 and 20.347 GHz methanol transitions are the first ever reported and this is only the fourth object to exhibit associated 23.121 GHz methanol masers. The 12.178 GHz methanol maser emission appears to have a higher flux density than that of the 6.668 GHz emission, which is unusual. No associated near-infrared flare counterpart was found, suggesting that the energy source of the flare is deeply embedded.
High-amplitude variability in Young Stellar Objects (YSOs) is usually associated with episodic accretion events. It has not been observed so far in massive YSOs. Here, the high-amplitude variable star sample of ContrerasPe~{n}a et al.(2016) has been used to search for highly-variable($Delta$K$ge$1,mag) sources coinciding with dense clumps mapped using the 850mum continuum emission by the ATLASGAL survey. 18 variable sources are centred on the sub-mm clump peaks, and coincide ($<$1) with a 24$mu$m point or compact ($<$10) source. 13 of these 18 sources can be fit by YSO models. The 13 variable YSOs(VYSO) have luminosities of $sim$10$^3$ L$_{odot}$, an average mass of 8 M$_{odot}$ and a range of ages up to 10$^6$ yr. 11 of these 13 VYSOs are located in the midst of infrared dark clouds. 9 of the 13 sources have $Delta$K$>$2 mag, significantly higher compared to the mean variability of the entire VVV sample. The light curves of these objects sampled between 2010-2015 display rising, declining, or quasi-periodic behaviour but no clear periodicity. Light-curve analysis using Plavchan method show that the most prominent phased signals have periods of a few hundred days. The nature and time-scale of variations found in 6.7 Ghz methanol maser emission (MME) in massive stars are similar to that of the VYSO light curves. We argue that the origin of the observed variability is episodic accretion. We suggest that the timescale of a few hundred days may represent the frequency at which a spiralling disk feeds dense gas to the young massive star.
We present a continuing study of a sample 44 molecular outflows, observed in 13CO lines, closely associated with 6.7GHz methanol masers, hence called Methanol Maser Associated Outflows (MMAOs). We compare MMAO properties with those of outflows from o ther surveys in the literature. In general, MMAOs follow similar trends, but show a deficit in number at low masses and momenta, with a corresponding higher fraction at the high end of the distributions. A similar trend is seen for the dynamical timescales of MMAOs. We argue that the lack of relatively low mass and young flows in MMAOs is due to the inherent selection-bias in the sample, i.e. its direct association with 6.7GHz methanol masers. This implies that methanol masers must switch on after the onset of outflows (hence accretion), and not before a sufficient abundance of methanol is liberated from icy dust mantles. Consequently the average dynamical age of MMAOs is older than for the general population of molecular outflows. We propose an adjusted evolutionary sequence of outflow and maser occurrence in the hot core phase, where methanol masers turn on after the onset of the outflow phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا