ﻻ يوجد ملخص باللغة العربية
Recent advancements in Convolutional Neural Networks have yielded super-human levels of performance in image recognition tasks [13, 25]; however, with increasing volumes of parcels crossing UK borders each year, classification of threats becomes integral to the smooth operation of UK borders. In this work we propose the first pipeline to effectively process Dual-Energy X-Ray scanner output, and perform classification capable of distinguishing between firearm families (Assault Rifle, Revolver, Self-Loading Pistol,Shotgun, and Sub-Machine Gun) from this output. With this pipeline we compare re-cent Convolutional Neural Network architectures against the X-Ray baggage domain via Transfer Learning and show ResNet50 to be most suitable to classification - outlining a number of considerations for operational success within the domain.
Detecting baggage threats is one of the most difficult tasks, even for expert officers. Many researchers have developed computer-aided screening systems to recognize these threats from the baggage X-ray scans. However, all of these frameworks are lim
Identifying potential threats concealed within the baggage is of prime concern for the security staff. Many researchers have developed frameworks that can detect baggage threats from X-ray scans. However, to the best of our knowledge, all of these fr
Automated systems designed for screening contraband items from the X-ray imagery are still facing difficulties with high clutter, concealment, and extreme occlusion. In this paper, we addressed this challenge using a novel multi-scale contour instanc
Climate change has caused reductions in river runoffs and aquifer recharge resulting in an increasingly unsustainable crop water demand from reduced freshwater availability. Achieving food security while deploying water in a sustainable manner will c
Different from static images, videos contain additional temporal and spatial information for better object detection. However, it is costly to obtain a large number of videos with bounding box annotations that are required for supervised deep learnin