ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor Pooling Driven Instance Segmentation Framework for Baggage Threat Recognition

70   0   0.0 ( 0 )
 نشر من قبل Taimur Hassan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automated systems designed for screening contraband items from the X-ray imagery are still facing difficulties with high clutter, concealment, and extreme occlusion. In this paper, we addressed this challenge using a novel multi-scale contour instance segmentation framework that effectively identifies the cluttered contraband data within the baggage X-ray scans. Unlike standard models that employ region-based or keypoint-based techniques to generate multiple boxes around objects, we propose to derive proposals according to the hierarchy of the regions defined by the contours. The proposed framework is rigorously validated on three public datasets, dubbed GDXray, SIXray, and OPIXray, where it outperforms the state-of-the-art methods by achieving the mean average precision score of 0.9779, 0.9614, and 0.8396, respectively. Furthermore, to the best of our knowledge, this is the first contour instance segmentation framework that leverages multi-scale information to recognize cluttered and concealed contraband data from the colored and grayscale security X-ray imagery.



قيم البحث

اقرأ أيضاً

Identifying potential threats concealed within the baggage is of prime concern for the security staff. Many researchers have developed frameworks that can detect baggage threats from X-ray scans. However, to the best of our knowledge, all of these fr ameworks require extensive training on large-scale and well-annotated datasets, which are hard to procure in the real world. This paper presents a novel unsupervised anomaly instance segmentation framework that recognizes baggage threats, in X-ray scans, as anomalies without requiring any ground truth labels. Furthermore, thanks to its stylization capacity, the framework is trained only once, and at the inference stage, it detects and extracts contraband items regardless of their scanner specifications. Our one-staged approach initially learns to reconstruct normal baggage content via an encoder-decoder network utilizing a proposed stylization loss function. The model subsequently identifies the abnormal regions by analyzing the disparities within the original and the reconstructed scans. The anomalous regions are then clustered and post-processed to fit a bounding box for their localization. In addition, an optional classifier can also be appended with the proposed framework to recognize the categories of these extracted anomalies. A thorough evaluation of the proposed system on four public baggage X-ray datasets, without any re-training, demonstrates that it achieves competitive performance as compared to the conventional fully supervised methods (i.e., the mean average precision score of 0.7941 on SIXray, 0.8591 on GDXray, 0.7483 on OPIXray, and 0.5439 on COMPASS-XP dataset) while outperforming state-of-the-art semi-supervised and unsupervised baggage threat detection frameworks by 67.37%, 32.32%, 47.19%, and 45.81% in terms of F1 score across SIXray, GDXray, OPIXray, and COMPASS-XP datasets, respectively.
Compared to many other dense prediction tasks, e.g., semantic segmentation, it is the arbitrary number of instances that has made instance segmentation much more challenging. In order to predict a mask for each instance, mainstream approaches either follow the detect-then-segment strategy (e.g., Mask R-CNN), or predict embedding vectors first then cluster pixels into individual instances. In this paper, we view the task of instance segmentation from a completely new perspective by introducing the notion of instance categories, which assigns categories to each pixel within an instance according to the instances location. With this notion, we propose segmenting objects by locations (SOLO), a simple, direct, and fast framework for instance segmentation with strong performance. We derive a few SOLO variants (e.g., Vanilla SOLO, Decoupled SOLO, Dynamic SOLO) following the basic principle. Our method directly maps a raw input image to the desired object categories and instance masks, eliminating the need for the grouping post-processing or the bounding box detection. Our approach achieves state-of-the-art results for instance segmentation in terms of both speed and accuracy, while being considerably simpler than the existing methods. Besides instance segmentation, our method yields state-of-the-art results in object detection (from our mask byproduct) and panoptic segmentation. We further demonstrate the flexibility and high-quality segmentation of SOLO by extending it to perform one-stage instance-level image matting. Code is available at: https://git.io/AdelaiDet
Detecting baggage threats is one of the most difficult tasks, even for expert officers. Many researchers have developed computer-aided screening systems to recognize these threats from the baggage X-ray scans. However, all of these frameworks are lim ited in identifying the contraband items under extreme occlusion. This paper presents a novel instance segmentation framework that utilizes trainable structure tensors to highlight the contours of the occluded and cluttered contraband items (by scanning multiple predominant orientations), while simultaneously suppressing the irrelevant baggage content. The proposed framework has been extensively tested on four publicly available X-ray datasets where it outperforms the state-of-the-art frameworks in terms of mean average precision scores. Furthermore, to the best of our knowledge, it is the only framework that has been validated on combined grayscale and colored scans obtained from four different types of X-ray scanners.
In the last two decades, luggage scanning has globally become one of the prime aviation security concerns. Manual screening of the baggage items is a cumbersome, subjective and inefficient process. Hence, many researchers have developed Xray imagery- based autonomous systems to address these shortcomings. However, to the best of our knowledge, there is no framework, up to now, that can recognize heavily occluded and cluttered baggage items from multi-vendor X-ray scans. This paper presents a cascaded structure tensor framework which can automatically extract and recognize suspicious items irrespective of their position and orientation in the multi-vendor X-ray scans. The proposed framework is unique, as it intelligently extracts each object by iteratively picking contour based transitional information from different orientations and uses only a single feedforward convolutional neural network for the recognition. The proposed framework has been rigorously tested on publicly available GDXray and SIXray datasets containing a total of 1,067,381 X-ray scans where it significantly outperformed the state-of-the-art solutions by achieving the mean average precision score of 0.9343 and 0.9595 for extracting and recognizing suspicious items from GDXray and SIXray scans, respectively. Furthermore, the proposed framework has achieved 15.78% better time
Object detection and instance recognition play a central role in many AI applications like autonomous driving, video surveillance and medical image analysis. However, training object detection models on large scale datasets remains computationally ex pensive and time consuming. This paper presents an efficient and open source object detection framework called SimpleDet which enables the training of state-of-the-art detection models on consumer grade hardware at large scale. SimpleDet supports up-to-date detection models with best practice. SimpleDet also supports distributed training with near linear scaling out of box. Codes, examples and documents of SimpleDet can be found at https://github.com/tusimple/simpledet .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا