ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Anomaly Instance Segmentation for Baggage Threat Recognition

70   0   0.0 ( 0 )
 نشر من قبل Taimur Hassan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying potential threats concealed within the baggage is of prime concern for the security staff. Many researchers have developed frameworks that can detect baggage threats from X-ray scans. However, to the best of our knowledge, all of these frameworks require extensive training on large-scale and well-annotated datasets, which are hard to procure in the real world. This paper presents a novel unsupervised anomaly instance segmentation framework that recognizes baggage threats, in X-ray scans, as anomalies without requiring any ground truth labels. Furthermore, thanks to its stylization capacity, the framework is trained only once, and at the inference stage, it detects and extracts contraband items regardless of their scanner specifications. Our one-staged approach initially learns to reconstruct normal baggage content via an encoder-decoder network utilizing a proposed stylization loss function. The model subsequently identifies the abnormal regions by analyzing the disparities within the original and the reconstructed scans. The anomalous regions are then clustered and post-processed to fit a bounding box for their localization. In addition, an optional classifier can also be appended with the proposed framework to recognize the categories of these extracted anomalies. A thorough evaluation of the proposed system on four public baggage X-ray datasets, without any re-training, demonstrates that it achieves competitive performance as compared to the conventional fully supervised methods (i.e., the mean average precision score of 0.7941 on SIXray, 0.8591 on GDXray, 0.7483 on OPIXray, and 0.5439 on COMPASS-XP dataset) while outperforming state-of-the-art semi-supervised and unsupervised baggage threat detection frameworks by 67.37%, 32.32%, 47.19%, and 45.81% in terms of F1 score across SIXray, GDXray, OPIXray, and COMPASS-XP datasets, respectively.



قيم البحث

اقرأ أيضاً

Automated systems designed for screening contraband items from the X-ray imagery are still facing difficulties with high clutter, concealment, and extreme occlusion. In this paper, we addressed this challenge using a novel multi-scale contour instanc e segmentation framework that effectively identifies the cluttered contraband data within the baggage X-ray scans. Unlike standard models that employ region-based or keypoint-based techniques to generate multiple boxes around objects, we propose to derive proposals according to the hierarchy of the regions defined by the contours. The proposed framework is rigorously validated on three public datasets, dubbed GDXray, SIXray, and OPIXray, where it outperforms the state-of-the-art methods by achieving the mean average precision score of 0.9779, 0.9614, and 0.8396, respectively. Furthermore, to the best of our knowledge, this is the first contour instance segmentation framework that leverages multi-scale information to recognize cluttered and concealed contraband data from the colored and grayscale security X-ray imagery.
Detecting baggage threats is one of the most difficult tasks, even for expert officers. Many researchers have developed computer-aided screening systems to recognize these threats from the baggage X-ray scans. However, all of these frameworks are lim ited in identifying the contraband items under extreme occlusion. This paper presents a novel instance segmentation framework that utilizes trainable structure tensors to highlight the contours of the occluded and cluttered contraband items (by scanning multiple predominant orientations), while simultaneously suppressing the irrelevant baggage content. The proposed framework has been extensively tested on four publicly available X-ray datasets where it outperforms the state-of-the-art frameworks in terms of mean average precision scores. Furthermore, to the best of our knowledge, it is the only framework that has been validated on combined grayscale and colored scans obtained from four different types of X-ray scanners.
Panoptic segmentation requires segments of both things (countable object instances) and stuff (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for things) and semantic segment ation (for stuff) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do not correlate well with natural occlusion relationship. To resolve this issue, we propose a branch that is tasked with modeling how two instance masks should overlap one another as a binary relation. Our method, named OCFusion, is lightweight but particularly effective in the instance fusion process. OCFusion is trained with the ground truth relation derived automatically from the existing dataset annotations. We obtain state-of-the-art results on COCO and show competitive results on the Cityscapes panoptic segmentation benchmark.
76 - Zhi Tian , Bowen Zhang , Hao Chen 2021
We propose a simple yet effective framework for instance and panoptic segmentation, termed CondInst (conditional convolutions for instance and panoptic segmentation). In the literature, top-performing instance segmentation methods typically follow th e paradigm of Mask R-CNN and rely on ROI operations (typically ROIAlign) to attend to each instance. In contrast, we propose to attend to the instances with dynamic conditional convolutions. Instead of using instance-wise ROIs as inputs to the instance mask head of fixed weights, we design dynamic instance-aware mask heads, conditioned on the instances to be predicted. CondInst enjoys three advantages: 1.) Instance and panoptic segmentation are unified into a fully convolutional network, eliminating the need for ROI cropping and feature alignment. 2.) The elimination of the ROI cropping also significantly improves the output instance mask resolution. 3.) Due to the much improved capacity of dynamically-generated conditional convolutions, the mask head can be very compact (e.g., 3 conv. layers, each having only 8 channels), leading to significantly faster inference time per instance and making the overall inference time almost constant, irrelevant to the number of instances. We demonstrate a simpler method that can achieve improved accuracy and inference speed on both instance and panoptic segmentation tasks. On the COCO dataset, we outperform a few state-of-the-art methods. We hope that CondInst can be a strong baseline for instance and panoptic segmentation. Code is available at: https://git.io/AdelaiDet
76 - Minghan Li , Shuai Li , Lida Li 2021
Modern one-stage video instance segmentation networks suffer from two limitations. First, convolutional features are neither aligned with anchor boxes nor with ground-truth bounding boxes, reducing the mask sensitivity to spatial location. Second, a video is directly divided into individual frames for frame-level instance segmentation, ignoring the temporal correlation between adjacent frames. To address these issues, we propose a simple yet effective one-stage video instance segmentation framework by spatial calibration and temporal fusion, namely STMask. To ensure spatial feature calibration with ground-truth bounding boxes, we first predict regressed bounding boxes around ground-truth bounding boxes, and extract features from them for frame-level instance segmentation. To further explore temporal correlation among video frames, we aggregate a temporal fusion module to infer instance masks from each frame to its adjacent frames, which helps our framework to handle challenging videos such as motion blur, partial occlusion and unusual object-to-camera poses. Experiments on the YouTube-VIS valid set show that the proposed STMask with ResNet-50/-101 backbone obtains 33.5 % / 36.8 % mask AP, while achieving 28.6 / 23.4 FPS on video instance segmentation. The code is released online https://github.com/MinghanLi/STMask.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا