ﻻ يوجد ملخص باللغة العربية
In the unsupervised open set domain adaptation (UOSDA), the target domain contains unknown classes that are not observed in the source domain. Researchers in this area aim to train a classifier to accurately: 1) recognize unknown target data (data with unknown classes) and, 2) classify other target data. To achieve this aim, a previous study has proven an upper bound of the target-domain risk, and the open set difference, as an important term in the upper bound, is used to measure the risk on unknown target data. By minimizing the upper bound, a shallow classifier can be trained to achieve the aim. However, if the classifier is very flexible (e.g., deep neural networks (DNNs)), the open set difference will converge to a negative value when minimizing the upper bound, which causes an issue where most target data are recognized as unknown data. To address this issue, we propose a new upper bound of target-domain risk for UOSDA, which includes four terms: source-domain risk, $epsilon$-open set difference ($Delta_epsilon$), a distributional discrepancy between domains, and a constant. Compared to the open set difference, $Delta_epsilon$ is more robust against the issue when it is being minimized, and thus we are able to use very flexible classifiers (i.e., DNNs). Then, we propose a new principle-guided deep UOSDA method that trains DNNs via minimizing the new upper bound. Specifically, source-domain risk and $Delta_epsilon$ are minimized by gradient descent, and the distributional discrepancy is minimized via a novel open-set conditional adversarial training strategy. Finally, compared to existing shallow and deep UOSDA methods, our method shows the state-of-the-art performance on several benchmark datasets, including digit recognition (MNIST, SVHN, USPS), object recognition (Office-31, Office-Home), and face recognition (PIE).
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution di
This paper addresses the problem of unsupervised domain adaption from theoretical and algorithmic perspectives. Existing domain adaptation theories naturally imply minimax optimization algorithms, which connect well with the domain adaptation methods
Retail food packaging contains information which informs choice and can be vital to consumer health, including product name, ingredients list, nutritional information, allergens, preparation guidelines, pack weight, storage and shelf life information
Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability it
Numerous algorithms have been proposed for transferring knowledge from a label-rich domain (source) to a label-scarce domain (target). Almost all of them are proposed for a closed-set scenario, where the source and the target domain completely share