ﻻ يوجد ملخص باللغة العربية
Retail food packaging contains information which informs choice and can be vital to consumer health, including product name, ingredients list, nutritional information, allergens, preparation guidelines, pack weight, storage and shelf life information (use-by / best before dates). The presence and accuracy of such information is critical to ensure a detailed understanding of the product and to reduce the potential for health risks. Consequently, erroneous or illegible labeling has the potential to be highly detrimental to consumers and many other stakeholders in the supply chain. In this paper, a multi-source deep learning-based domain adaptation system is proposed and tested to identify and verify the presence and legibility of use-by date information from food packaging photos taken as part of the validation process as the products pass along the food production line. This was achieved by improving the generalization of the techniques via making use of multi-source datasets in order to extract domain-invariant representations for all domains and aligning distribution of all pairs of source and target domains in a common feature space, along with the class boundaries. The proposed system performed very well in the conducted experiments, for automating the verification process and reducing labeling errors that could otherwise threaten public health and contravene legal requirements for food packaging information and accuracy. Comprehensive experiments on our food packaging datasets demonstrate that the proposed multi-source deep domain adaptation method significantly improves the classification accuracy and therefore has great potential for application and beneficial impact in food manufacturing control systems.
In many real-world applications, we want to exploit multiple source datasets of similar tasks to learn a model for a different but related target dataset -- e.g., recognizing characters of a new font using a set of different fonts. While most recent
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution di
In the unsupervised open set domain adaptation (UOSDA), the target domain contains unknown classes that are not observed in the source domain. Researchers in this area aim to train a classifier to accurately: 1) recognize unknown target data (data wi
Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability it
Given multiple source datasets with labels, how can we train a target model with no labeled data? Multi-source domain adaptation (MSDA) aims to train a model using multiple source datasets different from a target dataset in the absence of target data