ﻻ يوجد ملخص باللغة العربية
Recent advancements in learned index structures propose replacing existing index structures, like B-Trees, with approximate learned models. In this work, we present a unified benchmark that compares well-tuned implementations of three learned index structures against several state-of-the-art traditional baselines. Using four real-world datasets, we demonstrate that learned index structures can indeed outperform non-learned indexes in read-only in-memory workloads over a dense array. We also investigate the impact of caching, pipelining, dataset size, and key size. We study the performance profile of learned index structures, and build an explanation for why learned models achieve such good performance. Finally, we investigate other important properties of learned index structures, such as their performance in multi-threaded systems and their build times.
There is great excitement about learned index structures, but understandable skepticism about the practicality of a new method uprooting decades of research on B-Trees. In this paper, we work to remove some of that uncertainty by demonstrating how a
The recent proposal of learned index structures opens up a new perspective on how traditional range indexes can be optimized. However, the current learned indexes assume the data distribution is relatively static and the access pattern is uniform, wh
Scanning and filtering over multi-dimensional tables are key operations in modern analytical database engines. To optimize the performance of these operations, databases often create clustered indexes over a single dimension or multi-dimensional inde
Bitmap indexes must be compressed to reduce input/output costs and minimize CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps, we use techniques based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression.
Compressed bitmap indexes are used to speed up simple aggregate queries in databases. Indeed, set operations like intersections, unions and complements can be represented as logical operations (AND,OR,NOT) that are ideally suited for bitmaps. However