ﻻ يوجد ملخص باللغة العربية
Scanning and filtering over multi-dimensional tables are key operations in modern analytical database engines. To optimize the performance of these operations, databases often create clustered indexes over a single dimension or multi-dimensional indexes such as R-trees, or use complex sort orders (e.g., Z-ordering). However, these schemes are often hard to tune and their performance is inconsistent across different datasets and queries. In this paper, we introduce Flood, a multi-dimensional in-memory index that automatically adapts itself to a particular dataset and workload by jointly optimizing the index structure and data storage. Flood achieves up to three orders of magnitude faster performance for range scans with predicates than state-of-the-art multi-dimensional indexes or sort orders on real-world datasets and workloads. Our work serves as a building block towards an end-to-end learned database system.
Compressed bitmap indexes are used to speed up simple aggregate queries in databases. Indeed, set operations like intersections, unions and complements can be represented as logical operations (AND,OR,NOT) that are ideally suited for bitmaps. However
Recent advancements in learned index structures propose replacing existing index structures, like B-Trees, with approximate learned models. In this work, we present a unified benchmark that compares well-tuned implementations of three learned index s
There is great excitement about learned index structures, but understandable skepticism about the practicality of a new method uprooting decades of research on B-Trees. In this paper, we work to remove some of that uncertainty by demonstrating how a
Unstructured data is now commonly queried by using target deep neural networks (DNNs) to produce structured information, e.g., object types and positions in video. As these target DNNs can be computationally expensive, recent work uses proxy models t
Bitmap indexes must be compressed to reduce input/output costs and minimize CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps, we use techniques based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression.