ترغب بنشر مسار تعليمي؟ اضغط هنا

A Redefinition of the Halo Boundary Leads to a Simple yet Accurate Halo Model of Large Scale Structure

63   0   0.0 ( 0 )
 نشر من قبل Rafael Garcia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model for the halo--mass correlation function that explicitly incorporates halo exclusion. We assume that halos trace mass in a way that can be described using a single scale-independent bias parameter. However, our model exhibits scale dependent biasing due to the impact of halo-exclusion, the use of a ``soft (i.e. not infinitely sharp) halo boundary, and differences in the one halo term contributions to $xi_{rm hm}$ and $xi_{rm mm}$. These features naturally lead us to a redefinition of the halo boundary that lies at the ``by eye transition radius from the one--halo to the two--halo term in the halo--mass correlation function. When adopting our proposed definition, our model succeeds in describing the halo--mass correlation function with $approx 2%$ residuals over the radial range $0.1 h^{-1}{rm Mpc} < r < 80 h^{-1}{rm Mpc}$, and for halo masses in the range $10^{13} h^{-1}{rm M}_{odot} < M < 10^{15} h^{-1}{rm M}_{odot}$. Our proposed halo boundary is related to the splashback radius by a roughly constant multiplicative factor. Taking the 87-percentile as reference we find $r_{rm t}/R_{rm sp} approx 1.3$. Surprisingly, our proposed definition results in halo abundances that are well described by the Press-Schechter mass function with $delta_{rm sc}=1.449pm 0.004$. The clustering bias parameter is offset from the standard background-split prediction by $approx 10%-15%$. This level of agreement is comparable to that achieved with more standard halo definitions.

قيم البحث

اقرأ أيضاً

Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL $N$-body simulations. We closely follow the observational approach, measuring the halo position-halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power-law with slope $beta_{mathrm{M}}$ in the range $1/3$ to $1/2$, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of $beta_{mathrm{M}} = 0.36^{+0.01}_{-0.01}$. This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, $beta_{mathrm{M}} = 0.56^{+0.05}_{-0.05}$. There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations.
We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect halos of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesia n large-scale structure inference algorithm, HADES, and a Bayesian chain rule (the Blackwell-Rao Estimator), which we use to connect the inferred density field to the properties of dark matter halos. To demonstrate the capability of our approach we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful of detection of halos in the mock catalogue increases as a function of the signal-to-noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.
We study the matter bispectrum of large-scale structure by comparing the predictions of different perturbative and phenomenological models with the full three-dimensional bispectrum from $N$-body simulations estimated using modal methods. We show tha t among the perturbative approaches, effective field theory succeeds in extending the range of validity furthest on intermediate scales, at the cost of free additional parameters. By studying the halo model, we show that although it is satisfactory in the deeply non-linear regime, it predicts a deficit of power on intermediate scales, worsening at redshifts $z>0$. By comparison with the $N$-body bispectrum on those scales, we show that there is a significant squeezed component underestimated in the halo model. On the basis of these results, we propose a new three-shape model, based on the tree-level, squeezed and constant bispectrum shapes we identified in the halo model; after calibration this fits the simulations on all scales and redshifts of interest. We extend this model further to primordial non-Gaussianity of the local and equilateral types by showing that the same shapes can be used to describe the additional non-Gaussian component in the matter bispectrum. This method provides a HALOFIT-like prototype of the bispectrum that could be used to describe and test parameter dependencies and should be relevant for the bispectrum of weak gravitational lensing and wider applications.
95 - Asantha Cooray 2000
Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the cosmological parameters which govern them but are currently limited to small fields and subject to selection biases. We show how the expected sig nal from large-scale structure arises from the contributions from and correlations between individual halos. We determine the convergence power spectrum as a function of the maximum halo mass and so provide the means to interpret results from surveys that lack high mass halos either through selection criteria or small fields. Since shot noise from rare massive halos is mainly responsible for the sample variance below 10, our method should aid our ability to extract cosmological information from small fields.
111 - Andrea Lapi , Luigi Danese 2021
We generalize the stochastic theory of hierarchical clustering presented in paper I by Lapi & Danese (2020) to derive the (conditional) halo progenitor mass function and the related large-scale bias. Specifically, we present a stochastic differential equation that describes fluctuations in the mass growth of progenitor halos of given descendant mass and redshift, as driven by a multiplicative Gaussian white noise involving the power spectrum and the spherical collapse threshold of density perturbations. We demonstrate that, as cosmic time passes, the noise yields an average drift of the progenitors toward larger masses, that quantitatively renders the expectation from the standard extended Press & Schechter (EPS) theory. We solve the Fokker-Planck equation associated to the stochastic dynamics, and obtain as an exact, stationary solution the EPS progenitor mass function. Then we introduce a modification of the stochastic equation in terms of a mass-dependent collapse threshold modulating the noise, and solve analytically the associated Fokker-Planck equation for the progenitor mass function. The latter is found to be in excellent agreement with the outcomes of $N-$body simulations; even more remarkably, this is achieved with the same shape of the collapse threshold used in paper I to reproduce the halo mass function. Finally, we exploit the above results to compute the large-scale halo bias, and find it in pleasing agreement with the $N-$body outcomes. All in all, the present paper illustrates that the stochastic theory of hierarchical clustering introduced in paper I can describe effectively not only halos abundance, but also their progenitor distribution and their correlation with the large-scale environment across cosmic times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا