ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Lensing by Large-Scale Structure: A Dark Matter Halo Approach

96   0   0.0 ( 0 )
 نشر من قبل Asantha R. Cooray
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Asantha Cooray




اسأل ChatGPT حول البحث

Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the cosmological parameters which govern them but are currently limited to small fields and subject to selection biases. We show how the expected signal from large-scale structure arises from the contributions from and correlations between individual halos. We determine the convergence power spectrum as a function of the maximum halo mass and so provide the means to interpret results from surveys that lack high mass halos either through selection criteria or small fields. Since shot noise from rare massive halos is mainly responsible for the sample variance below 10, our method should aid our ability to extract cosmological information from small fields.



قيم البحث

اقرأ أيضاً

58 - Bhuvnesh Jain 1999
Selected results on estimating cosmological parameters from simulated weak lensing data with noise are presented. Numerical simulations of ray tracing through N-body simulations have been used to generate shear and convergence maps due to lensing by large-scale structure. Noise due to the intrinsic ellipticities of a finite number of galaxies is added. In this contribution we present our main results on estimation of the power spectrum and density parameter Omega from weak lensing data on several degree sized fields. We also show that there are striking morphological differences in the weak lensing maps of clusters of galaxies formed in models with different values of Omega.
50 - A. Refregier 1998
The coherent image distortions induced by weak gravitational lensing can be used to measure the power spectrum of density inhomogeneities in the universe. We present our on-going effort to detect this effect with the FIRST radio survey, which current ly contains about 400,000 sources over 4,200 square degrees, and thus provides a unique resource for this purpose. We discuss the sensitivity of our measurement in the context of various cosmological models. We then discuss the crucial issue of systematic effects, the most serious of which are source fragmentation, image-noise correlation, and VLA-beam anisotropy. After accounting for these effects, we expect our experiment to yield a detection, or at least a tight upper limit, for the weak lensing power spectrum on 0.2-20 degree scales.
Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL $N$-body simulations. We closely follow the observational approach, measuring the halo position-halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power-law with slope $beta_{mathrm{M}}$ in the range $1/3$ to $1/2$, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of $beta_{mathrm{M}} = 0.36^{+0.01}_{-0.01}$. This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, $beta_{mathrm{M}} = 0.56^{+0.05}_{-0.05}$. There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations.
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 , h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.
Cannibals are dark matter particles with a scattering process that allows three particles to annihilate to two. This exothermic process keeps the gas of the remaining particles warm long after they become non-relativistic. A cannibalizing dark sector which is decoupled from the Standard Model naturally arises from a pure-glue confining hidden sector. It has an effective field theory description with a single massive interacting real scalar field, the lightest glueball. Since warm dark matter strongly suppresses growth of structure cannibals cannot be all of the dark matter. Thus we propose a scenario where most dark matter is non-interacting and cold but about 1 percent is cannibalistic. We review the cannibals unusual scaling of the temperature and energy and number densities with redshift and generalize the equations for the growth of matter density perturbations to the case of cannibals. We solve the equations numerically to predict the scaling of the Hubble parameter and the characteristic shape of the linear matter power spectrum as a function of model parameters. Our results may have implications for the $sigma_8$ and $H_0$ problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا