ﻻ يوجد ملخص باللغة العربية
Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the cosmological parameters which govern them but are currently limited to small fields and subject to selection biases. We show how the expected signal from large-scale structure arises from the contributions from and correlations between individual halos. We determine the convergence power spectrum as a function of the maximum halo mass and so provide the means to interpret results from surveys that lack high mass halos either through selection criteria or small fields. Since shot noise from rare massive halos is mainly responsible for the sample variance below 10, our method should aid our ability to extract cosmological information from small fields.
Selected results on estimating cosmological parameters from simulated weak lensing data with noise are presented. Numerical simulations of ray tracing through N-body simulations have been used to generate shear and convergence maps due to lensing by
The coherent image distortions induced by weak gravitational lensing can be used to measure the power spectrum of density inhomogeneities in the universe. We present our on-going effort to detect this effect with the FIRST radio survey, which current
Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be
Cannibals are dark matter particles with a scattering process that allows three particles to annihilate to two. This exothermic process keeps the gas of the remaining particles warm long after they become non-relativistic. A cannibalizing dark sector