ﻻ يوجد ملخص باللغة العربية
Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL $N$-body simulations. We closely follow the observational approach, measuring the halo position-halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power-law with slope $beta_{mathrm{M}}$ in the range $1/3$ to $1/2$, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of $beta_{mathrm{M}} = 0.36^{+0.01}_{-0.01}$. This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, $beta_{mathrm{M}} = 0.56^{+0.05}_{-0.05}$. There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations.
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be
We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity, and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background (CMB) anisotropies
We investigate the correlation between nine different dark matter halo properties using a rank correlation analysis and a Principal Component Analysis for a sample of haloes spanning five orders of magnitude in mass. We consider mass and dimensionles
Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the cosmological parameters which govern them but are currently limited to small fields and subject to selection biases. We show how the expected sig
Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is charact