ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Prototypical Networks for Few-shot Learning on Attributed Networks

237   0   0.0 ( 0 )
 نشر من قبل Kaize Ding
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such as social network analysis, financial fraud detection, and drug discovery. As a central analytical task on attributed networks, node classification has received much attention in the research community. In real-world attributed networks, a large portion of node classes only contain limited labeled instances, rendering a long-tail node class distribution. Existing node classification algorithms are unequipped to handle the textit{few-shot} node classes. As a remedy, few-shot learning has attracted a surge of attention in the research community. Yet, few-shot node classification remains a challenging problem as we need to address the following questions: (i) How to extract meta-knowledge from an attributed network for few-shot node classification? (ii) How to identify the informativeness of each labeled instance for building a robust and effective model? To answer these questions, in this paper, we propose a graph meta-learning framework -- Graph Prototypical Networks (GPN). By constructing a pool of semi-supervised node classification tasks to mimic the real test environment, GPN is able to perform textit{meta-learning} on an attributed network and derive a highly generalizable model for handling the target classification task. Extensive experiments demonstrate the superior capability of GPN in few-shot node classification.



قيم البحث

اقرأ أيضاً

Episodic learning is a popular practice among researchers and practitioners interested in few-shot learning. It consists of organising training in a series of learning problems, each relying on small support and query sets to mimic the few-shot circu mstances encountered during evaluation. In this paper, we investigate the usefulness of episodic learning in Prototypical Networks and Matching Networks, two of the most popular algorithms making use of this practice. Surprisingly, in our experiments we found that, for Prototypical and Matching Networks, it is detrimental to use the episodic learning strategy of separating training samples between support and query set, as it is a data-inefficient way to exploit training batches. These non-episodic variants, which are closely related to the classic Neighbourhood Component Analysis, reliably improve over their episodic counterparts in multiple datasets, achieving an accuracy that (in the case of Prototypical Networks) is competitive with the state-of-the-art, despite being extremely simple.
We present neural architectures that disentangle RGB-D images into objects shapes and styles and a map of the background scene, and explore their applications for few-shot 3D object detection and few-shot concept classification. Our networks incorpor ate architectural biases that reflect the image formation process, 3D geometry of the world scene, and shape-style interplay. They are trained end-to-end self-supervised by predicting views in static scenes, alongside a small number of 3D object boxes. Objects and scenes are represented in terms of 3D feature grids in the bottleneck of the network. We show that the proposed 3D neural representations are compositional: they can generate novel 3D scene feature maps by mixing object shapes and styles, resizing and adding the resulting object 3D feature maps over background scene feature maps. We show that classifiers for object categories, color, materials, and spatial relationships trained over the disentangled 3D feature sub-spaces generalize better with dramatically fewer examples than the current state-of-the-art, and enable a visual question answering system that uses them as its modules to generalize one-shot to novel objects in the scene.
How can we find the right graph for semi-supervised learning? In real world applications, the choice of which edges to use for computation is the first step in any graph learning process. Interestingly, there are often many types of similarity availa ble to choose as the edges between nodes, and the choice of edges can drastically affect the performance of downstream semi-supervised learning systems. However, despite the importance of graph design, most of the literature assumes that the graph is static. In this work, we present Grale, a scalable method we have developed to address the problem of graph design for graphs with billions of nodes. Grale operates by fusing together different measures of(potentially weak) similarity to create a graph which exhibits high task-specific homophily between its nodes. Grale is designed for running on large datasets. We have deployed Grale in more than 20 different industrial settings at Google, including datasets which have tens of billions of nodes, and hundreds of trillions of potential edges to score. By employing locality sensitive hashing techniques,we greatly reduce the number of pairs that need to be scored, allowing us to learn a task specific model and build the associated nearest neighbor graph for such datasets in hours, rather than the days or even weeks that might be required otherwise. We illustrate this through a case study where we examine the application of Grale to an abuse classification problem on YouTube with hundreds of million of items. In this application, we find that Grale detects a large number of malicious actors on top of hard-coded rules and content classifiers, increasing the total recall by 89% over those approaches alone.
The recent success of graph neural networks has significantly boosted molecular property prediction, advancing activities such as drug discovery. The existing deep neural network methods usually require large training dataset for each property, impai ring their performances in cases (especially for new molecular properties) with a limited amount of experimental data, which are common in real situations. To this end, we propose Meta-MGNN, a novel model for few-shot molecular property prediction. Meta-MGNN applies molecular graph neural network to learn molecular representation and builds a meta-learning framework for model optimization. To exploit unlabeled molecular information and address task heterogeneity of different molecular properties, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights into the former framework, strengthening the whole learning model. Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
Machine learning classifiers are often trained to recognize a set of pre-defined classes. However, in many applications, it is often desirable to have the flexibility of learning additional concepts, with limited data and without re-training on the f ull training set. This paper addresses this problem, incremental few-shot learning, where a regular classification network has already been trained to recognize a set of base classes, and several extra novel classes are being considered, each with only a few labeled examples. After learning the novel classes, the model is then evaluated on the overall classification performance on both base and novel classes. To this end, we propose a meta-learning model, the Attention Attractor Network, which regularizes the learning of novel classes. In each episode, we train a set of new weights to recognize novel classes until they converge, and we show that the technique of recurrent back-propagation can back-propagate through the optimization process and facilitate the learning of these parameters. We demonstrate that the learned attractor network can help recognize novel classes while remembering old classes without the need to review the original training set, outperforming various baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا