ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling 3D Prototypical Networks For Few-Shot Concept Learning

143   0   0.0 ( 0 )
 نشر من قبل Shamit Lal
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present neural architectures that disentangle RGB-D images into objects shapes and styles and a map of the background scene, and explore their applications for few-shot 3D object detection and few-shot concept classification. Our networks incorporate architectural biases that reflect the image formation process, 3D geometry of the world scene, and shape-style interplay. They are trained end-to-end self-supervised by predicting views in static scenes, alongside a small number of 3D object boxes. Objects and scenes are represented in terms of 3D feature grids in the bottleneck of the network. We show that the proposed 3D neural representations are compositional: they can generate novel 3D scene feature maps by mixing object shapes and styles, resizing and adding the resulting object 3D feature maps over background scene feature maps. We show that classifiers for object categories, color, materials, and spatial relationships trained over the disentangled 3D feature sub-spaces generalize better with dramatically fewer examples than the current state-of-the-art, and enable a visual question answering system that uses them as its modules to generalize one-shot to novel objects in the scene.



قيم البحث

اقرأ أيضاً

Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such as social network analysis, financial fraud detection, and drug discovery. As a central analytical task on attributed networks, node classification has received much attention in the research community. In real-world attributed networks, a large portion of node classes only contain limited labeled instances, rendering a long-tail node class distribution. Existing node classification algorithms are unequipped to handle the textit{few-shot} node classes. As a remedy, few-shot learning has attracted a surge of attention in the research community. Yet, few-shot node classification remains a challenging problem as we need to address the following questions: (i) How to extract meta-knowledge from an attributed network for few-shot node classification? (ii) How to identify the informativeness of each labeled instance for building a robust and effective model? To answer these questions, in this paper, we propose a graph meta-learning framework -- Graph Prototypical Networks (GPN). By constructing a pool of semi-supervised node classification tasks to mimic the real test environment, GPN is able to perform textit{meta-learning} on an attributed network and derive a highly generalizable model for handling the target classification task. Extensive experiments demonstrate the superior capability of GPN in few-shot node classification.
Episodic learning is a popular practice among researchers and practitioners interested in few-shot learning. It consists of organising training in a series of learning problems, each relying on small support and query sets to mimic the few-shot circu mstances encountered during evaluation. In this paper, we investigate the usefulness of episodic learning in Prototypical Networks and Matching Networks, two of the most popular algorithms making use of this practice. Surprisingly, in our experiments we found that, for Prototypical and Matching Networks, it is detrimental to use the episodic learning strategy of separating training samples between support and query set, as it is a data-inefficient way to exploit training batches. These non-episodic variants, which are closely related to the classic Neighbourhood Component Analysis, reliably improve over their episodic counterparts in multiple datasets, achieving an accuracy that (in the case of Prototypical Networks) is competitive with the state-of-the-art, despite being extremely simple.
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works impractical. To cope with this problem, recent work performed instance-wise cross-domain self-supervised learning, followed by an additional fine-tuning stage. However, the instance-wise self-supervised learning only learns and aligns low-level discriminative features. In this paper, we propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA). PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains. Our framework captures category-wise semantic structures of the data by in-domain prototypical contrastive learning; and performs feature alignment through cross-domain prototypical self-supervision. Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively. Our project page is at http://xyue.io/pcs-fuda/index.html
136 - Kai Li , Yulun Zhang , Kunpeng Li 2020
The recent flourish of deep learning in various tasks is largely accredited to the rich and accessible labeled data. Nonetheless, massive supervision remains a luxury for many real applications, boosting great interest in label-scarce techniques such as few-shot learning (FSL), which aims to learn concept of new classes with a few labeled samples. A natural approach to FSL is data augmentation and many recent works have proved the feasibility by proposing various data synthesis models. However, these models fail to well secure the discriminability and diversity of the synthesized data and thus often produce undesirable results. In this paper, we propose Adversarial Feature Hallucination Networks (AFHN) which is based on conditional Wasserstein Generative Adversarial networks (cWGAN) and hallucinates diverse and discriminative features conditioned on the few labeled samples. Two novel regularizers, i.e., the classification regularizer and the anti-collapse regularizer, are incorporated into AFHN to encourage discriminability and diversity of the synthesized features, respectively. Ablation study verifies the effectiveness of the proposed cWGAN based feature hallucination framework and the proposed regularizers. Comparative results on three common benchmark datasets substantiate the superiority of AFHN to existing data augmentation based FSL approaches and other state-of-the-art ones.
186 - Fangbing Liu , Qing Wang 2021
Few-shot learning aims to learn a classifier using a few labelled instances for each class. Metric-learning approaches for few-shot learning embed instances into a high-dimensional space and conduct classification based on distances among instance em beddings. However, such instance embeddings are usually shared across all episodes and thus lack the discriminative power to generalize classifiers according to episode-specific features. In this paper, we propose a novel approach, namely emph{Episode Adaptive Embedding Network} (EAEN), to learn episode-specific embeddings of instances. By leveraging the probability distributions of all instances in an episode at each channel-pixel embedding dimension, EAEN can not only alleviate the overfitting issue encountered in few-shot learning tasks, but also capture discriminative features specific to an episode. To empirically verify the effectiveness and robustness of EAEN, we have conducted extensive experiments on three widely used benchmark datasets, under various combinations of different generic embedding backbones and different classifiers. The results show that EAEN significantly improves classification accuracy about $10%$ to $20%$ in different settings over the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا