ﻻ يوجد ملخص باللغة العربية
What is a fair performance metric? We consider the choice of fairness metrics through the lens of metric elicitation -- a principled framework for selecting performance metrics that best reflect implicit preferences. The use of metric elicitation enables a practitioner to tune the performance and fairness metrics to the task, context, and population at hand. Specifically, we propose a novel strategy to elicit group-fair performance metrics for multiclass classification problems with multiple sensitive groups that also includes selecting the trade-off between predictive performance and fairness violation. The proposed elicitation strategy requires only relative preference feedback and is robust to both finite sample and feedback noise.
Given a binary prediction problem, which performance metric should the classifier optimize? We address this question by formalizing the problem of Metric Elicitation. The goal of metric elicitation is to discover the performance metric of a practitio
Metric elicitation is a recent framework for eliciting performance metrics that best reflect implicit user preferences. This framework enables a practitioner to adjust the performance metrics based on the application, context, and population at hand.
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy
The vulnerability to slight input perturbations is a worrying yet intriguing property of deep neural networks (DNNs). Despite many previous works studying the reason behind such adversarial behavior, the relationship between the generalization perfor