ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Version Space Reduction for Convolutional Neural Networks

124   0   0.0 ( 0 )
 نشر من قبل Jiayu Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In active learning, sampling bias could pose a serious inconsistency problem and hinder the algorithm from finding the optimal hypothesis. However, many methods for neural networks are hypothesis space agnostic and do not address this problem. We examine active learning with convolutional neural networks through the principled lens of version space reduction. We identify the connection between two approaches---prior mass reduction and diameter reduction---and propose a new diameter-based querying method---the minimum Gibbs-vote disagreement. By estimating version space diameter and bias, we illustrate how version space of neural networks evolves and examine the realizability assumption. With experiments on MNIST, Fashion-MNIST, SVHN and STL-10 datasets, we demonstrate that diameter reduction methods reduce the version space more effectively and perform better than prior mass reduction and other baselines, and that the Gibbs vote disagreement is on par with the best query method.



قيم البحث

اقرأ أيضاً

In this work we propose a novel approach to utilize convolutional neural networks for time series forecasting. The time direction of the sequential data with spatial dimensions $D=1,2$ is considered democratically as the input of a spatiotemporal $(D +1)$-dimensional convolutional neural network. Latter then reduces the data stream from $D +1 to D$ dimensions followed by an incriminator cell which uses this information to forecast the subsequent time step. We empirically compare this strategy to convolutional LSTMs and LSTMs on their performance on the sequential MNIST and the JSB chorals dataset, respectively. We conclude that temporally folded convolutional neural networks (TFCs) may outperform the conventional recurrent strategies.
The convolutional layers are core building blocks of neural network architectures. In general, a convolutional filter applies to the entire frequency spectrum of the input data. We explore artificially constraining the frequency spectra of these filt ers and data, called band-limiting, during training. The frequency domain constraints apply to both the feed-forward and back-propagation steps. Experimentally, we observe that Convolutional Neural Networks (CNNs) are resilient to this compression scheme and results suggest that CNNs learn to leverage lower-frequency components. In particular, we found: (1) band-limited training can effectively control the resource usage (GPU and memory); (2) models trained with band-limited layers retain high prediction accuracy; and (3) requires no modification to existing training algorithms or neural network architectures to use unlike other compression schemes.
To address the limitations of existing magnitude-based pruning algorithms in cases where model weights or activations are of large and similar magnitude, we propose a novel perspective to discover parameter redundancy among channels and accelerate de ep CNNs via channel pruning. Precisely, we argue that channels revealing similar feature information have functional overlap and that most channels within each such similarity group can be removed without compromising models representational power. After deriving an effective metric for evaluating channel similarity through probabilistic modeling, we introduce a pruning algorithm via hierarchical clustering of channels. In particular, the proposed algorithm does not rely on sparsity training techniques or complex data-driven optimization and can be directly applied to pre-trained models. Extensive experiments on benchmark datasets strongly demonstrate the superior acceleration performance of our approach over prior arts. On ImageNet, our pruned ResNet-50 with 30% FLOPs reduced outperforms the baseline model.
We show implicit filter level sparsity manifests in convolutional neural networks (CNNs) which employ Batch Normalization and ReLU activation, and are trained with adaptive gradient descent techniques and L2 regularization or weight decay. Through an extensive empirical study (Mehta et al., 2019) we hypothesize the mechanism behind the sparsification process, and find surprising links to certain filter sparsification heuristics proposed in literature. Emergence of, and the subsequent pruning of selective features is observed to be one of the contributing mechanisms, leading to feature sparsity at par or better than certain explicit sparsification / pruning approaches. In this workshop article we summarize our findings, and point out corollaries of selective-featurepenalization which could also be employed as heuristics for filter pruning
86 - Hengyue Pan , Hui Jiang , Xin Niu 2018
The past few years have witnessed the fast development of different regularization methods for deep learning models such as fully-connected deep neural networks (DNNs) and Convolutional Neural Networks (CNNs). Most of previous methods mainly consider to drop features from input data and hidden layers, such as Dropout, Cutout and DropBlocks. DropConnect select to drop connections between fully-connected layers. By randomly discard some features or connections, the above mentioned methods control the overfitting problem and improve the performance of neural networks. In this paper, we proposed two novel regularization methods, namely DropFilter and DropFilter-PLUS, for the learning of CNNs. Different from the previous methods, DropFilter and DropFilter-PLUS selects to modify the convolution filters. For DropFilter-PLUS, we find a suitable way to accelerate the learning process based on theoretical analysis. Experimental results on MNIST show that using DropFilter and DropFilter-PLUS may improve performance on image classification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا