ترغب بنشر مسار تعليمي؟ اضغط هنا

Implicit Filter Sparsification In Convolutional Neural Networks

107   0   0.0 ( 0 )
 نشر من قبل Dushyant Mehta
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show implicit filter level sparsity manifests in convolutional neural networks (CNNs) which employ Batch Normalization and ReLU activation, and are trained with adaptive gradient descent techniques and L2 regularization or weight decay. Through an extensive empirical study (Mehta et al., 2019) we hypothesize the mechanism behind the sparsification process, and find surprising links to certain filter sparsification heuristics proposed in literature. Emergence of, and the subsequent pruning of selective features is observed to be one of the contributing mechanisms, leading to feature sparsity at par or better than certain explicit sparsification / pruning approaches. In this workshop article we summarize our findings, and point out corollaries of selective-featurepenalization which could also be employed as heuristics for filter pruning

قيم البحث

اقرأ أيضاً

We investigate filter level sparsity that emerges in convolutional neural networks (CNNs) which employ Batch Normalization and ReLU activation, and are trained with adaptive gradient descent techniques and L2 regularization or weight decay. We conduc t an extensive experimental study casting our initial findings into hypotheses and conclusions about the mechanisms underlying the emergent filter level sparsity. This study allows new insight into the performance gap obeserved between adapative and non-adaptive gradient descent methods in practice. Further, analysis of the effect of training strategies and hyperparameters on the sparsity leads to practical suggestions in designing CNN training strategies enabling us to explore the tradeoffs between feature selectivity, network capacity, and generalization performance. Lastly, we show that the implicit sparsity can be harnessed for neural network speedup at par or better than explicit sparsification / pruning approaches, with no modifications to the typical training pipeline required.
Deep learning frameworks leverage GPUs to perform massively-parallel computations over batches of many training examples efficiently. However, for certain tasks, one may be interested in performing per-example computations, for instance using per-exa mple gradients to evaluate a quantity of interest unique to each example. One notable application comes from the field of differential privacy, where per-example gradients must be norm-bounded in order to limit the impact of each example on the aggregated batch gradient. In this work, we discuss how per-example gradients can be efficiently computed in convolutional neural networks (CNNs). We compare existing strategies by performing a few steps of differentially-private training on CNNs of varying sizes. We also introduce a new strategy for per-example gradient calculation, which is shown to be advantageous depending on the model architecture and how the model is trained. This is a first step in making differentially-private training of CNNs practical.
The sophisticated structure of Convolutional Neural Network (CNN) allows for outstanding performance, but at the cost of intensive computation. As significant redundancies inevitably present in such a structure, many works have been proposed to prune the convolutional filters for computation cost reduction. Although extremely effective, most works are based only on quantitative characteristics of the convolutional filters, and highly overlook the qualitative interpretation of individual filters specific functionality. In this work, we interpreted the functionality and redundancy of the convolutional filters from different perspectives, and proposed a functionality-oriented filter pruning method. With extensive experiment results, we proved the convolutional filters qualitative significance regardless of magnitude, demonstrated significant neural network redundancy due to repetitive filter functions, and analyzed the filter functionality defection under inappropriate retraining process. Such an interpretable pruning approach not only offers outstanding computation cost optimization over previous filter pruning methods, but also interprets filter pruning process.
In this work we propose a novel approach to utilize convolutional neural networks for time series forecasting. The time direction of the sequential data with spatial dimensions $D=1,2$ is considered democratically as the input of a spatiotemporal $(D +1)$-dimensional convolutional neural network. Latter then reduces the data stream from $D +1 to D$ dimensions followed by an incriminator cell which uses this information to forecast the subsequent time step. We empirically compare this strategy to convolutional LSTMs and LSTMs on their performance on the sequential MNIST and the JSB chorals dataset, respectively. We conclude that temporally folded convolutional neural networks (TFCs) may outperform the conventional recurrent strategies.
In active learning, sampling bias could pose a serious inconsistency problem and hinder the algorithm from finding the optimal hypothesis. However, many methods for neural networks are hypothesis space agnostic and do not address this problem. We exa mine active learning with convolutional neural networks through the principled lens of version space reduction. We identify the connection between two approaches---prior mass reduction and diameter reduction---and propose a new diameter-based querying method---the minimum Gibbs-vote disagreement. By estimating version space diameter and bias, we illustrate how version space of neural networks evolves and examine the realizability assumption. With experiments on MNIST, Fashion-MNIST, SVHN and STL-10 datasets, we demonstrate that diameter reduction methods reduce the version space more effectively and perform better than prior mass reduction and other baselines, and that the Gibbs vote disagreement is on par with the best query method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا