ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotational properties of annulus dusty plasma in a strong magnetic field

162   0   0.0 ( 0 )
 نشر من قبل Mangilal Choudhary
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The collective dynamics of annulus dusty plasma formed between a co-centric conducting (non-conducting) disk and ring configuration is studied in a strongly magnetized radio-frequency (rf) discharge. A superconducting electromagnet is used to introduce a homogeneous magnetic field to the dusty plasma medium. In absence of the magnetic field, dust grains exhibit thermal motion around their equilibrium position. The dust grains start to rotate in anticlockwise direction with increasing magnetic field (B $>$ 0.02 T), and the constant value of the angular frequency at various strengths of magnetic field confirms the rigid body rotation. The angular frequency of dust grains linearly increases up to a threshold magnetic field (B $>$ 0.6 T) and after that its value remains nearly constant in a certain range of magnetic field. Further increase in magnetic field (B $>$ 1 T) lowers the angular frequency. Low value of angular frequency is expected by reducing the width of annulus dusty plasma or the input rf power. The azimuthal ion drag force due to the magnetic field is assumed to be the energy source which drives the rotational motion. The resultant radial electric field in the presence of magnetic field determines the direction of rotation. The variation of floating (plasma) potential across the annular region at given magnetic field explains the rotational properties of the annulus dusty plasma in the presence of magnetic field.

قيم البحث

اقرأ أيضاً

The paper reports on the dynamics of a 3-dimensional dusty plasma in a strong magnetic field. An electrostatic potential well created by a conducting or non-conducting ring in the rf discharge confines the charged dust particles. In the absence of th e magnetic field, dust grains exhibit a thermal motion about their equilibrium position. As the magnetic field crosses a threshold value (B $>$ 0.02 T), the edge particles start to rotate and form a vortex in the vertical plane. At the same time, the central region particles either exhibit thermal motion or $vec{E} times vec{B}$ motion in the horizontal plane. At B $>$ 0.15 T, the central region dust grains start to rotate in the opposite direction resulting in a pair of counter-rotating vortices in the vertical plane. The characteristics of the vortex pair change with increasing the strength of the magnetic field (B $sim$ 0.8 T). At B $>$ 0.8 T, dust grains exhibit very complex motion in the rotating torus. The angular frequency variation of rotating particles indicates a differential or sheared dust rotation in a vortex. The angular frequency increases with increasing the magnetic field from 0.05 T to 0.8 T. The ion drag force and dust charge gradient along with the E-field are considered as possible energy sources for driving the edge vortex flow and central region vortex motion, respectively. The directions of rotation also confirm the different energy sources responsible for the vortex motion.
We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma ($< 20$ $mu$s), the size of the image is dominated by the time-of-flight Coulomb explosion of the dense ion cloud. For later times, we measure the 2-D Gaussian width of the ion image, obtaining the transverse expansion velocity as a function of magnetic field (up to 70 G). We observe that the expansion velocity scales as B$^{-1/2}$, explained by a nonlinear ambipolar diffusion model with anisotropic diffusion in two different directions.
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1 < Gamma << Gamma_c) where Gamma is the Coulomb coupling parameter and Gamma_c is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.
Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear deco rrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field $B_mathrm{seed}$ can trigger the generation of an order-of-magnitude stronger magneti c field with opposite sign at the target surface. Strong surface field generation occurs when the laser pulse is relativistically intense and results from the currents associated with the cyclotron rotation of laser-heated electrons transiting through the target and the compensating current of cold electrons. We derive a predictive scaling for this surface field generation, $B_mathrm{gen} sim - 2 pi B_mathrm{seed} Delta x/lambda_0$, where $Delta x$ is the target thickness and $lambda_0$ is the laser wavelength, and conduct 1D and 2D particle-in-cell simulations to confirm its applicability over a wide range of conditions. We additionally demonstrate that both the seed and surface-generated magnetic fields can have a strong impact on application-relevant plasma dynamics, for example substantially altering the overall expansion and ion acceleration from a $mu$m-thick laser-irradiated target with a kilotesla-level seed magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا