ترغب بنشر مسار تعليمي؟ اضغط هنا

Is HR 6819 a triple system containing a black hole? -- An alternative explanation

136   0   0.0 ( 0 )
 نشر من قبل Julia Bodensteiner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HR 6819 was recently proposed to be a triple system consisting of an inner B-type giant + black hole binary with an orbital period of 40d and an outer Be tertiary. This interpretation is mainly based on two inferences: that the emission attributed to the outer Be star is stationary, and that the inner star, which is used as mass calibrator for the black hole, is a B-type giant. We re-investigate the properties of HR 6819 by spectral disentangling and an atmosphere analysis of the disentangled spectra to search for a possibly simpler alternative explanation for HR 6819. Disentangling implies that the Be component is not a static tertiary, but rather a component of the binary in the 40-d orbit. The inferred radial velocity amplitudes imply an extreme mass ratio of M_2/M_1 = 15 +/- 3. We infer spectroscopic masses of 0.4$^{+0.3}_{-0.1}$ Msun and 6$^{+5}_{-3}$ Msun for the primary and secondary, which agree well with the dynamical masses for an inclination of i = 32 deg. This indicates that the primary might be a stripped star rather than a B-type giant. Evolutionary modelling suggests that a possible progenitor system would be a tight (P_i ~ 2d) B+B binary system that experienced conservative mass transfer. While the observed nitrogen enrichment of the primary conforms with the predictions of the evolutionary models, we find no indications for the predicted He enrichment. We suggest that HR 6819 is a binary system consisting of a stripped B-type primary and a rapidly-rotating Be star that formed from a previous mass-transfer event. In the framework of this interpretation, HR 6819 does not contain a black hole. Interferometry can distinguish between these two scenarios by providing an independent measurement of the separation between the visible components.



قيم البحث

اقرأ أيضاً

HR 6819 was reported in Rivinius et al. (2020) to be a triple system with a non-accreting black hole (BH) in its inner binary. In our study we check if this inner binary can be reconstructed using the isolated binary formation channel or the dynamica l one within globular star clusters. Our goals are to understand the formation of the inner binary and to test the presence of a non-accreting BH. To simulate the inner binary evolution we assumed that the influence of the third body on the formation of the inner binary is negligible. We tested various models with different values of physical parameters such as the mass loss rate during BH formation or the efficiency of orbital energy loss for common envelope ejection. By comparing the Roche lobe radii with the respective stellar radii no mass transfer event was shown to happen for more than 40 Myr after the BH collapse, suggesting that no accretion disk is supposed to form around the BH during the BH-MS phase. We can therefore reconstruct the system with isolated binaries, although in our simulations we had to adopt non-standard parameter values and to assume no asymmetric mass ejection during the black hole collapse. Out of the whole synthetic Galactic disk BH population only 0.0001% of the BH-MS binaries fall within the observational constraints. We expect only few binaries in the Galactic globular clusters to be potential candidates for the HR 6819 system. Our statistical analysis suggests that despite the HR 6819 inner binary can be reconstructed with isolated binary evolution, this evolutionary channel is unlikely to reproduce its reported parameters. Under the initial assumption that the outer star doesnt impact the evolution of its inner binary, we argue that the absence of a third body proposed by El-Badry & Quataert (2021) and Bodensteiner, J. et al. (2020) might be a more natural explanation for the given observational data.
Following the discovery of the T8 subdwarf WISEJ200520.38+542433.9 (Wolf 1130C), with common proper motion to a binary (Wolf 1130AB) consisting of an M subdwarf and a white dwarf, we set out to learn more about the old binary in the system. We find t hat the A and B components of Wolf 1130 are tidally locked, which is revealed by the coherence of more than a year of V band photometry phase folded to the derived orbital period of 0.4967 days. Forty new high-resolution, near-infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) provide radial velocities and a projected rotational velocity (v sin i) of 14.7 +/- 0.7 km/s for the M subdwarf. In tandem with a Gaia parallax-derived radius and verified tidal-locking, we calculate an inclination of i=29 +/- 2 degrees. From the single-lined orbital solution and the inclination we derive an absolute mass for the unseen primary (1.24+0.19-0.15 Msun). Its non-detection between 0.2 and 2.5 microns implies that it is an old (>3.7 Gyr) and cool (Teff<7000K) ONe white dwarf. This is the first ultramassive white dwarf within 25pc. The evolution of Wolf 1130AB into a cataclysmic variable is inevitable, making it a potential Type Ia supernova progenitor. The formation of a triple system with a primary mass >100 times the tertiary mass and the survival of the system through the common-envelope phase, where ~80% of the system mass was lost, is remarkable. Our analysis of Wolf 1130 allows us to infer its formation and evolutionary history, which has unique implications for understanding low-mass star and brown dwarf formation around intermediate mass stars.
Several dozen optical echelle spectra demonstrate that HR 6819 is a hierarchical triple. A classical Be star is in a wide orbit with an unconstrained period around an inner 40 d binary consisting of a B3 III star and an unseen companion in a circular orbit. The radial-velocity semi-amplitude of 61.3 km/s of the inner star and its minimum (probable) mass of 5.0 Msun (6.3 +- 0.7 Msun) imply a mass of the unseen object of >= 4.2 Msun (>= 5.0 +- 0.4 Msun), that is, a black hole (BH). The spectroscopic time series is stunningly similar to observations of LB-1. A similar triple-star architecture of LB-1 would reduce the mass of the BH in LB-1 from ~70 Msun to a level more typical of Galactic stellar remnant BHs. The BH in HR 6819 probably is the closest known BH to the Sun, and together with LB-1, suggests a population of quiet BHs. Its embedment in a hierarchical triple structure may be of interest for models of merging double BHs or BH + neutron star binaries. Other triple stars with an outer Be star but without BH are identified; through stripping, such systems may become a source of single Be stars.
131 - R. P. Deane 2014
Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $sim$10$^9$ M$_odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.
HR 6819 was recently claimed to be a hierarchical triple system of a Be star in a wide orbit around an inner binary system of a black hole (BH) and a B III type star. We argue that this system is unlikely to be a hierarchical triple due to three reas ons: (i) Given that this system is discovered in a magnitude limited Bright Star Catalog, the expected number of such systems in the Milky Way amounts to about $10^4$ while the estimate for the MW budget for such systems is between $10^2-10^3$ systems under generous assumptions. Such a large gap cannot be reconciled as it would otherwise likely overflow the MW budget for BHs; (ii) The dynamical stability of this system sets lower bounds on the orbital separation of the outer Be star, while it not being resolved by Gaia places an upper limit on its projected sky separation. We show that these two constraints would imply a narrow range for the outer orbit without resorting to geometrical fine-tuning; (iii) The triple system should have survived the stellar evolution prior to the formation of the BH in the inner binary. We perform numerical simulations starting with conservative initial conditions of this system and show that a small parameter space for BH progenitor stars mass loss, BH natal kicks, and initial orbital separation can reproduce HR 6819. Therefore, we propose this system is a chance superposition of a Be star with a binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا