ترغب بنشر مسار تعليمي؟ اضغط هنا

A naked-eye triple system with a nonaccreting black hole in the inner binary

61   0   0.0 ( 0 )
 نشر من قبل Thomas Rivinius
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several dozen optical echelle spectra demonstrate that HR 6819 is a hierarchical triple. A classical Be star is in a wide orbit with an unconstrained period around an inner 40 d binary consisting of a B3 III star and an unseen companion in a circular orbit. The radial-velocity semi-amplitude of 61.3 km/s of the inner star and its minimum (probable) mass of 5.0 Msun (6.3 +- 0.7 Msun) imply a mass of the unseen object of >= 4.2 Msun (>= 5.0 +- 0.4 Msun), that is, a black hole (BH). The spectroscopic time series is stunningly similar to observations of LB-1. A similar triple-star architecture of LB-1 would reduce the mass of the BH in LB-1 from ~70 Msun to a level more typical of Galactic stellar remnant BHs. The BH in HR 6819 probably is the closest known BH to the Sun, and together with LB-1, suggests a population of quiet BHs. Its embedment in a hierarchical triple structure may be of interest for models of merging double BHs or BH + neutron star binaries. Other triple stars with an outer Be star but without BH are identified; through stripping, such systems may become a source of single Be stars.

قيم البحث

اقرأ أيضاً

92 - R. P. Deane 2014
Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $sim$10$^9$ M$_odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.
A large number of binary black holes (BBHs) with longer orbital periods are supposed to exist as progenitors of BBH mergers recently discovered with gravitational wave (GW) detectors. In our previous papers, we proposed to search for such BBHs in tri ple systems through the radial-velocity modulation of the tertiary orbiting star. If the tertiary is a pulsar, high precision and cadence observations of its arrival time enable an unambiguous characterization of the pulsar -- BBH triples located at several kpc, which are inaccessible with the radial velocity of stars. The present paper shows that such inner BBHs can be identified through the short-term R{o}mer delay modulation, on the order of $10$ msec for our fiducial case, a triple consisting of $20~M_odot$ BBH and $1.4~M_odot$ pulsar with $P_mathrm{in}=10$ days and $P_mathrm{out}=100$ days. If the relativistic time delays are measured as well, one can determine basically all the orbital parameters of the triple. For instance, this method is applicable to inner BBHs of down to $sim 1$ hr orbital periods if the orbital period of the tertiary pulsar is around several days. Inner BBHs with $lesssim 1$ hr orbital period emit the GW detectable by future space-based GW missions including LISA, DECIGO, and BBO, and very short inner BBHs with sub-second orbital period can be even probed by the existing ground-based GW detectors. Therefore, our proposed methodology provides a complementary technique to search for inner BBHs in triples, if exist at all, in the near future.
HR 6819 was recently proposed to be a triple system consisting of an inner B-type giant + black hole binary with an orbital period of 40d and an outer Be tertiary. This interpretation is mainly based on two inferences: that the emission attributed to the outer Be star is stationary, and that the inner star, which is used as mass calibrator for the black hole, is a B-type giant. We re-investigate the properties of HR 6819 by spectral disentangling and an atmosphere analysis of the disentangled spectra to search for a possibly simpler alternative explanation for HR 6819. Disentangling implies that the Be component is not a static tertiary, but rather a component of the binary in the 40-d orbit. The inferred radial velocity amplitudes imply an extreme mass ratio of M_2/M_1 = 15 +/- 3. We infer spectroscopic masses of 0.4$^{+0.3}_{-0.1}$ Msun and 6$^{+5}_{-3}$ Msun for the primary and secondary, which agree well with the dynamical masses for an inclination of i = 32 deg. This indicates that the primary might be a stripped star rather than a B-type giant. Evolutionary modelling suggests that a possible progenitor system would be a tight (P_i ~ 2d) B+B binary system that experienced conservative mass transfer. While the observed nitrogen enrichment of the primary conforms with the predictions of the evolutionary models, we find no indications for the predicted He enrichment. We suggest that HR 6819 is a binary system consisting of a stripped B-type primary and a rapidly-rotating Be star that formed from a previous mass-transfer event. In the framework of this interpretation, HR 6819 does not contain a black hole. Interferometry can distinguish between these two scenarios by providing an independent measurement of the separation between the visible components.
A previously unknown optical transient (OT 120926) has been observed in the constellation Bootes. The transient flared to magnitude 4.7, which is comparable to the visual magnitudes of the nearby stars $pi$ Boo and $omicron$ Boo. Database searches do not yield an unambiguous identification of a quiescent counterpart of this transient but do identify several candidates. However, none of the candidate stellar counterparts have shown any credible evidence of previous variability in the All-Sky Automated Survey or the Catalina Real-time Transient Survey. A flare on the nearby high proper motion, probable M dwarf star LP 440-48 could have produced OT 120926, but the amplitude of the flare would be an unprecedented 11.3 magnitudes. The current record amplitude for such flares on M dwarfs is 9.5 magnitudes.
BD And is a fairly bright (V = 10.8), active and close (P = 0.9258 days) eclipsing binary. The cyclic variability of the apparent orbital period as well as third light in the light curves indicate the presence of an additional late-type component. Th e principal aim is the spectroscopic testing of the third-body hypothesis and determination of absolute stellar parameters for both components of the eclipsing binary. First medium and high-resolution spectroscopy of the system was obtained. The broadening-function technique appropriate for heavily-broadened spectra of close binaries was used. The radial velocities were determined fitting the Gaussian functions and rotational profiles to the broadening functions. A limited amount of photometric data has also been obtained. Although the photometric observations were focused on the obtaining the timing information, a cursory light-curve analysis was also performed. Extracted broadening functions clearly show the presence of a third, slowly-rotating component. Its radial velocity is within error of the systemic velocity of the eclipsing pair, strongly supporting the physical bond. The observed systemic radial-velocity and third-component changes do not support the 9 year orbit found from the timing variability. Masses of the components of the eclipsing pair are determined with about 0.5% precision. Further characterization of the system would require long-term photometric and spectroscopic monitoring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا