ﻻ يوجد ملخص باللغة العربية
HR 6819 was recently claimed to be a hierarchical triple system of a Be star in a wide orbit around an inner binary system of a black hole (BH) and a B III type star. We argue that this system is unlikely to be a hierarchical triple due to three reasons: (i) Given that this system is discovered in a magnitude limited Bright Star Catalog, the expected number of such systems in the Milky Way amounts to about $10^4$ while the estimate for the MW budget for such systems is between $10^2-10^3$ systems under generous assumptions. Such a large gap cannot be reconciled as it would otherwise likely overflow the MW budget for BHs; (ii) The dynamical stability of this system sets lower bounds on the orbital separation of the outer Be star, while it not being resolved by Gaia places an upper limit on its projected sky separation. We show that these two constraints would imply a narrow range for the outer orbit without resorting to geometrical fine-tuning; (iii) The triple system should have survived the stellar evolution prior to the formation of the BH in the inner binary. We perform numerical simulations starting with conservative initial conditions of this system and show that a small parameter space for BH progenitor stars mass loss, BH natal kicks, and initial orbital separation can reproduce HR 6819. Therefore, we propose this system is a chance superposition of a Be star with a binary.
We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the VLT. We detect a large number of donor star absorption features across a wide range of wavelengths
There are two outstanding issues regarding the neutron-star merger event GW170817: the nature of the compact remnant and the interstellar shock. The mass of the remnant of GW170817, $sim$2.7 $M_odot$, implies the remnant could be either a massive, ro
A large number of binary black holes (BBHs) with longer orbital periods are supposed to exist as progenitors of BBH mergers recently discovered with gravitational wave (GW) detectors. In our previous papers, we proposed to search for such BBHs in tri
Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observatio
HR 6819 was recently proposed to be a triple system consisting of an inner B-type giant + black hole binary with an orbital period of 40d and an outer Be tertiary. This interpretation is mainly based on two inferences: that the emission attributed to