ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised Learning on Graphs: Deep Insights and New Direction

423   0   0.0 ( 0 )
 نشر من قبل Wei Jin
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of deep learning notoriously requires larger amounts of costly annotated data. This has led to the development of self-supervised learning (SSL) that aims to alleviate this limitation by creating domain specific pretext tasks on unlabeled data. Simultaneously, there are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs). GNNs can naturally utilize unlabeled nodes through the simple neighborhood aggregation that is unable to thoroughly make use of unlabeled nodes. Thus, we seek to harness SSL for GNNs to fully exploit the unlabeled data. Different from data instances in the image and text domains, nodes in graphs present unique structure information and they are inherently linked indicating not independent and identically distributed (or i.i.d.). Such complexity is a double-edged sword for SSL on graphs. On the one hand, it determines that it is challenging to adopt solutions from the image and text domains to graphs and dedicated efforts are desired. On the other hand, it provides rich information that enables us to build SSL from a variety of perspectives. Thus, in this paper, we first deepen our understandings on when, why, and which strategies of SSL work with GNNs by empirically studying numerous basic SSL pretext tasks on graphs. Inspired by deep insights from the empirical studies, we propose a new direction SelfTask to build advanced pretext tasks that are able to achieve state-of-the-art performance on various real-world datasets. The specific experimental settings to reproduce our results can be found in url{https://github.com/ChandlerBang/SelfTask-GNN}.

قيم البحث

اقرأ أيضاً

Labeling training examples at scale is a perennial challenge in machine learning. Self-supervision methods compensate for the lack of direct supervision by leveraging prior knowledge to automatically generate noisy labeled examples. Deep probabilisti c logic (DPL) is a unifying framework for self-supervised learning that represents unknown labels as latent variables and incorporates diverse self-supervision using probabilistic logic to train a deep neural network end-to-end using variational EM. While DPL is successful at combining pre-specified self-supervision, manually crafting self-supervision to attain high accuracy may still be tedious and challenging. In this paper, we propose Self-Supervised Self-Supervision (S4), which adds to DPL the capability to learn new self-supervision automatically. Starting from an initial seed, S4 iteratively uses the deep neural network to propose new self supervision. These are either added directly (a form of structured self-training) or verified by a human expert (as in feature-based active learning). Experiments show that S4 is able to automatically propose accurate self-supervision and can often nearly match the accuracy of supervised methods with a tiny fraction of the human effort.
We study self-supervised learning on graphs using contrastive methods. A general scheme of prior methods is to optimize two-view representations of input graphs. In many studies, a single graph-level representation is computed as one of the contrasti ve objectives, capturing limited characteristics of graphs. We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics. To this end, we propose a group contrastive learning framework in this work. Our framework embeds the given graph into multiple subspaces, of which each representation is prompted to encode specific characteristics of graphs. To learn diverse and informative representations, we develop principled objectives that enable us to capture the relations among both intra-space and inter-space representations in groups. Under the proposed framework, we further develop an attention-based representor function to compute representations that capture different substructures of a given graph. Built upon our framework, we extend two current methods into GroupCL and GroupIG, equipped with the proposed objective. Comprehensive experimental results show our framework achieves a promising boost in performance on a variety of datasets. In addition, our qualitative results show that features generated from our representor successfully capture various specific characteristics of graphs.
Graph neural networks have shown superior performance in a wide range of applications providing a powerful representation of graph-structured data. Recent works show that the representation can be further improved by auxiliary tasks. However, the aux iliary tasks for heterogeneous graphs, which contain rich semantic information with various types of nodes and edges, have less explored in the literature. In this paper, to learn graph neural networks on heterogeneous graphs we propose a novel self-supervised auxiliary learning method using meta-paths, which are composite relations of multiple edge types. Our proposed method is learning to learn a primary task by predicting meta-paths as auxiliary tasks. This can be viewed as a type of meta-learning. The proposed method can identify an effective combination of auxiliary tasks and automatically balance them to improve the primary task. Our methods can be applied to any graph neural networks in a plug-in manner without manual labeling or additional data. The experiments demonstrate that the proposed method consistently improves the performance of link prediction and node classification on heterogeneous graphs.
Graph self-supervised learning has gained increasing attention due to its capacity to learn expressive node representations. Many pretext tasks, or loss functions have been designed from distinct perspectives. However, we observe that different prete xt tasks affect downstream tasks differently cross datasets, which suggests that searching pretext tasks is crucial for graph self-supervised learning. Different from existing works focusing on designing single pretext tasks, this work aims to investigate how to automatically leverage multiple pretext tasks effectively. Nevertheless, evaluating representations derived from multiple pretext tasks without direct access to ground truth labels makes this problem challenging. To address this obstacle, we make use of a key principle of many real-world graphs, i.e., homophily, or the principle that ``like attracts like, as the guidance to effectively search various self-supervised pretext tasks. We provide theoretical understanding and empirical evidence to justify the flexibility of homophily in this search task. Then we propose the AutoSSL framework which can automatically search over combinations of various self-supervised tasks. By evaluating the framework on 7 real-world datasets, our experimental results show that AutoSSL can significantly boost the performance on downstream tasks including node clustering and node classification compared with training under individual tasks. Code will be released at https://github.com/ChandlerBang/AutoSSL.
Enabling robots to autonomously navigate complex environments is essential for real-world deployment. Prior methods approach this problem by having the robot maintain an internal map of the world, and then use a localization and planning method to na vigate through the internal map. However, these approaches often include a variety of assumptions, are computationally intensive, and do not learn from failures. In contrast, learning-based methods improve as the robot acts in the environment, but are difficult to deploy in the real-world due to their high sample complexity. To address the need to learn complex policies with few samples, we propose a generalized computation graph that subsumes value-based model-free methods and model-based methods, with specific instantiations interpolating between model-free and model-based. We then instantiate this graph to form a navigation model that learns from raw images and is sample efficient. Our simulated car experiments explore the design decisions of our navigation model, and show our approach outperforms single-step and $N$-step double Q-learning. We also evaluate our approach on a real-world RC car and show it can learn to navigate through a complex indoor environment with a few hours of fully autonomous, self-supervised training. Videos of the experiments and code can be found at github.com/gkahn13/gcg

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا