ﻻ يوجد ملخص باللغة العربية
Audio classification is considered as a challenging problem in pattern recognition. Recently, many algorithms have been proposed using deep neural networks. In this paper, we introduce a new attention-based neural network architecture called Classifier-Attention-Based Convolutional Neural Network (CAB-CNN). The algorithm uses a newly designed architecture consisting of a list of simple classifiers and an attention mechanism as a classifier selector. This design significantly reduces the number of parameters required by the classifiers and thus their complexities. In this way, it becomes easier to train the classifiers and achieve a high and steady performance. Our claims are corroborated by the experimental results. Compared to the state-of-the-art algorithms, our algorithm achieves more than 10% improvements on all selected test scores.
The present paper introduces a deep neural network (DNN) for predicting the instantaneous loudness of a sound from its time waveform. The DNN was trained using the output of a more complex model, called the Cambridge loudness model. While a modern PC
Audio-based multimedia retrieval tasks may identify semantic information in audio streams, i.e., audio concepts (such as music, laughter, or a revving engine). Conventional Gaussian-Mixture-Models have had some success in classifying a reduced set of
One of the problems with automated audio captioning (AAC) is the indeterminacy in word selection corresponding to the audio event/scene. Since one acoustic event/scene can be described with several words, it results in a combinatorial explosion of po
Recently, many attention-based deep neural networks have emerged and achieved state-of-the-art performance in environmental sound classification. The essence of attention mechanism is assigning contribution weights on different parts of features, nam
Attention-based beamformers have recently been shown to be effective for multi-channel speech recognition. However, they are less capable at capturing local information. In this work, we propose a 2D Conv-Attention module which combines convolution n