ترغب بنشر مسار تعليمي؟ اضغط هنا

Audio Concept Classification with Hierarchical Deep Neural Networks

85   0   0.0 ( 0 )
 نشر من قبل Mirco Ravanelli
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Audio-based multimedia retrieval tasks may identify semantic information in audio streams, i.e., audio concepts (such as music, laughter, or a revving engine). Conventional Gaussian-Mixture-Models have had some success in classifying a reduced set of audio concepts. However, multi-class classification can benefit from context window analysis and the discriminating power of deeper architectures. Although deep learning has shown promise in various applications such as speech and object recognition, it has not yet met the expectations for other fields such as audio concept classification. This paper explores, for the first time, the potential of deep learning in classifying audio concepts on User-Generated Content videos. The proposed system is comprised of two cascaded neural networks in a hierarchical configuration to analyze the short- and long-term context information. Our system outperforms a GMM approach by a relative 54%, a Neural Network by 33%, and a Deep Neural Network by 12% on the TRECVID-MED database

قيم البحث

اقرأ أيضاً

In this work, we propose an approach that features deep feature embedding learning and hierarchical classification with triplet loss function for Acoustic Scene Classification (ASC). In the one hand, a deep convolutional neural network is firstly tra ined to learn a feature embedding from scene audio signals. Via the trained convolutional neural network, the learned embedding embeds an input into the embedding feature space and transforms it into a high-level feature vector for representation. In the other hand, in order to exploit the structure of the scene categories, the original scene classification problem is structured into a hierarchy where similar categories are grouped into meta-categories. Then, hierarchical classification is accomplished using deep neural network classifiers associated with triplet loss function. Our experiments show that the proposed system achieves good performance on both the DCASE 2018 Task 1A and 1B datasets, resulting in accuracy gains of 15.6% and 16.6% absolute over the DCASE 2018 baseline on Task 1A and 1B, respectively.
While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural netw orks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and processing time. Through experiments conducted with real user data, we demonstrate that deep neural networks that use lower bit precision significantly reduce the processing time (up to 30x). However, their performance impact is low (< 3.14%) only in the case of classification tasks such as those present in voice activity detection.
Audio classification is considered as a challenging problem in pattern recognition. Recently, many algorithms have been proposed using deep neural networks. In this paper, we introduce a new attention-based neural network architecture called Classifi er-Attention-Based Convolutional Neural Network (CAB-CNN). The algorithm uses a newly designed architecture consisting of a list of simple classifiers and an attention mechanism as a classifier selector. This design significantly reduces the number of parameters required by the classifiers and thus their complexities. In this way, it becomes easier to train the classifiers and achieve a high and steady performance. Our claims are corroborated by the experimental results. Compared to the state-of-the-art algorithms, our algorithm achieves more than 10% improvements on all selected test scores.
This paper proposes a Sub-band Convolutional Neural Network for spoken term classification. Convolutional neural networks (CNNs) have proven to be very effective in acoustic applications such as spoken term classification, keyword spotting, speaker i dentification, acoustic event detection, etc. Unlike applications in computer vision, the spatial invariance property of 2D convolutional kernels does not fit acoustic applications well since the meaning of a specific 2D kernel varies a lot along the feature axis in an input feature map. We propose a sub-band CNN architecture to apply different convolutional kernels on each feature sub-band, which makes the overall computation more efficient. Experimental results show that the computational efficiency brought by sub-band CNN is more beneficial for small-footprint models. Compared to a baseline full band CNN for spoken term classification on a publicly available Speech Commands dataset, the proposed sub-band CNN architecture reduces the computation by 39.7% on commands classification, and 49.3% on digits classification with accuracy maintained.
Applications of deep learning to automatic multitrack mixing are largely unexplored. This is partly due to the limited available data, coupled with the fact that such data is relatively unstructured and variable. To address these challenges, we propo se a domain-inspired model with a strong inductive bias for the mixing task. We achieve this with the application of pre-trained sub-networks and weight sharing, as well as with a sum/difference stereo loss function. The proposed model can be trained with a limited number of examples, is permutation invariant with respect to the input ordering, and places no limit on the number of input sources. Furthermore, it produces human-readable mixing parameters, allowing users to manually adjust or refine the generated mix. Results from a perceptual evaluation involving audio engineers indicate that our approach generates mixes that outperform baseline approaches. To the best of our knowledge, this work demonstrates the first approach in learning multitrack mixing conventions from real-world data at the waveform level, without knowledge of the underlying mixing parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا