ﻻ يوجد ملخص باللغة العربية
In two-dimensional (2D) electron systems, an off-resonant high-frequency circularly polarized electromagnetic field can induce the quasi-stationary bound electron states of repulsive scatterers. As a consequence, the resonant scattering of conduction electrons through the quasi-stationary states and the capture of conduction electrons by the states appear. The present theory describes the transport properties of 2D electron gas irradiated by a circularly polarized light, which are modified by these processes. Particularly, it is demonstrated that irradiation of 2D electron systems by the off-resonant field results in the quantum correction to conductivity of resonant kind.
We report density dependent instabilities in the localised regime of mesoscopic two-dimensional electron systems (2DES) with intermediate strength of background disorder. They are manifested by strong resistance oscillations induced by high perpendic
Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs/AlGaAs heterostructure enable a large variety of applications from fundamental research to high speed transistors. Electrical circuits are thereby commonly define
Current-induced spin polarization (CISP) is rederived in ballistic spin-orbit-coupled electron systems, based on equilibrium statistical mechanics. A simple and useful picture is correspondingly proposed to help understand the CISP and predict the po
Effects of microwave radiation on magnetoresistance are analyzed in a balance-equation scheme that covers regimes of inter- and intra-Landau level processes and takes account of photon-asissted electron transitions as well as radiation-induced change
Two-dimensional electrons confined to GaAs quantum wells are hallmark platforms for probing electron-electron interaction. Many key observations have been made in these systems as sample quality improved over the years. Here, we present a breakthroug