ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation-induced magnetotransport in high-mobility two-dimensional systems: Role of electron heating

119   0   0.0 ( 0 )
 نشر من قبل X. L. Lei
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effects of microwave radiation on magnetoresistance are analyzed in a balance-equation scheme that covers regimes of inter- and intra-Landau level processes and takes account of photon-asissted electron transitions as well as radiation-induced change of the electron distribution for high mobility two-dimensional systems. Short-range scatterings due to background impurities and defects are shown to be the dominant direct contributors to the photoresistance oscillations. The electron temperature characterizing the system heating due to irradiation, is derived by balancing the energy absorption from the radiation field and the energy dissipation to the lattice through realistic electron-phonon couplings, exhibiting resonant oscillation. Microwave modulations of Shubnikov de Haas oscillation amplitude are produced together with microwave-induced resistance oscillations, in agreement with experimental findings. In addition, the suppression of the magnetoresistance caused by low-frequency radiation in the higher magnetic field side is also demonstrated.

قيم البحث

اقرأ أيضاً

Introduction of a Josephson field effect transistor (JoFET) concept sparked active research on proximity effects in semiconductors. Induced superconductivity and electrostatic control of critical current has been demonstrated in two-dimensional gases in InAs, graphene and topological insulators, and in one-dimensional systems including quantum spin Hall edges. Recently, interest in superconductor-semiconductor interfaces was renewed by the search for Majorana fermions, which were predicted to reside at the interface. More exotic non-Abelian excitations, such as parafermions (fractional Majorana fermions) or Fibonacci fermions may be formed when fractional quantum Hall edge states interface with superconductivity. In this paper we develop transparent superconducting contacts to high mobility two-dimensional electron gas (2DEG) in GaAs and demonstrate induced superconductivity across several microns. Supercurrent in a ballistic junction has been observed across 0.6 $mu$m of 2DEG, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields ($>16$ Tesla) in NbN contacts enables investigation of a long-sought regime of an interplay between superconductivity and strongly correlated states in a 2DEG at high magnetic fields.
149 - M.Langenbuch , M.Suhrke , 2003
We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechani cal Kubo formula is evaluated by taking into account spin-conserving scatterers in an extension of the self-consistent Born approximation that considers the spin degree of freedom. The calculated conductivity exhibits besides the well-known beating in the Shubnikov-de Haas (SdH) oscillations a modulation which is due to a suppression of scattering away from the crossing points of Landau levels and does not show up in the density of states. This modulation, surviving even at elevated temperatures when the SdH oscillations are damped out, could serve to identify spin-orbit coupling in magnetotransport experiments. Our magnetotransport calculations are extended also to lateral superlattices and predictions are made with respect to 1/B periodic oscillations in dependence on carrier density and strength of the spin-orbit coupling.
In a high mobility two-dimensional electron gas (2DEG) in a GaAs/AlGaAs quantum well we observe a strong magnetoresistance. In lowering the electron density the magnetoresistance gets more pronounced and reaches values of more than 300%. We observe t hat the huge magnetoresistance vanishes for increasing the temperature. An additional density dependent factor is introduced to be able to fit the parabolic magnetoresistance to the electron-electron interaction correction.
Suppressing electron scattering is essential to achieve high-mobility two-dimensional electron systems (2DESs) that are clean enough to probe exotic interaction-driven phenomena. In heterostructures it is common practice to utilize modulation doping, where the ionized dopants are physically separated from the 2DES channel. The doping-well structure augments modulation doping by providing additional screening for all types of charged impurities in the vicinity of the 2DES, which is necessary to achieve record-breaking samples. Despite its prevalence in the design of ultra-high-mobility 2DESs, the working principles of the doping-well structure have not been reported. Here we elaborate on the mechanics of electron transfer from doping wells to the 2DES, focusing on GaAs/AlGaAs samples grown by molecular beam epitaxy. Based on this understanding we demonstrate how structural parameters in the doping well can be varied to tune the properties of the 2DES.
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc t ransport experiments at frequencies above 120 GHz, MIROs start to quench, while above 230 GHz, they completely disappear. The results will need to be understood theoretically but are qualitatively discussed within a model in which forced electronic charge oscillations (plasmons) play an intermediate role in the interaction process between the radiation and the single-particle electron excitations between Landau levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا