ﻻ يوجد ملخص باللغة العربية
Effects of microwave radiation on magnetoresistance are analyzed in a balance-equation scheme that covers regimes of inter- and intra-Landau level processes and takes account of photon-asissted electron transitions as well as radiation-induced change of the electron distribution for high mobility two-dimensional systems. Short-range scatterings due to background impurities and defects are shown to be the dominant direct contributors to the photoresistance oscillations. The electron temperature characterizing the system heating due to irradiation, is derived by balancing the energy absorption from the radiation field and the energy dissipation to the lattice through realistic electron-phonon couplings, exhibiting resonant oscillation. Microwave modulations of Shubnikov de Haas oscillation amplitude are produced together with microwave-induced resistance oscillations, in agreement with experimental findings. In addition, the suppression of the magnetoresistance caused by low-frequency radiation in the higher magnetic field side is also demonstrated.
Introduction of a Josephson field effect transistor (JoFET) concept sparked active research on proximity effects in semiconductors. Induced superconductivity and electrostatic control of critical current has been demonstrated in two-dimensional gases
We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechani
In a high mobility two-dimensional electron gas (2DEG) in a GaAs/AlGaAs quantum well we observe a strong magnetoresistance. In lowering the electron density the magnetoresistance gets more pronounced and reaches values of more than 300%. We observe t
Suppressing electron scattering is essential to achieve high-mobility two-dimensional electron systems (2DESs) that are clean enough to probe exotic interaction-driven phenomena. In heterostructures it is common practice to utilize modulation doping,
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc t