ﻻ يوجد ملخص باللغة العربية
We build a theoretical picture of how the light from galaxies evolves across cosmic time. In particular, we predict the evolution of the galaxy spectral energy distribution (SED) by carefully integrating the star formation and metal enrichment histories of semi-analytic model (SAM) galaxies and combining these with stellar population synthesis models which we call mentari. Our SAM combines prescriptions to model the interplay between gas accretion, star formation, feedback process, and chemical enrichment in galaxy evolution. From this, the SED of any simulated galaxy at any point in its history can be constructed and compared with telescope data to reverse engineer the various physical processes that may have led to a particular set of observations. The synthetic SEDs of millions of simulated galaxies from mentari can cover wavelengths from the far UV to infrared, and thus can tell a near complete story of the history of galaxy evolution. keywords{galaxies: evolution - galaxies: stellar content - galaxies.}
It is now possible for hydrodynamical simulations to reproduce a representative galaxy population. Accordingly, it is timely to assess critically some of the assumptions of traditional semi-analytic galaxy formation models. We use the Eagle simulatio
We investigate the dynamical evolution of galaxies in groups with different formation epochs. Galaxy groups have been selected to be in different dynamical states, namely dynamically old and dynamically young, which reflect their early and late forma
We implement a detailed dust model into the L-Galaxies semi-analytical model which includes: injection of dust by type II and type Ia supernovae (SNe) and AGB stars; grain growth in molecular clouds; and destruction due to supernova-induced shocks, s
We study the correlation between the specific star formation rate of central galaxies and neighbour galaxies, also known as galactic conformity, out to 20 Mpc/h using three semi-analytic models (SAMs, one from L-GALAXIES and other two from GALFORM).
We combine the Shark semi-analytic model of galaxy formation with the ProSpect software tool for spectral energy distribution (SED) generation to study the multi-wavelength emission of galaxies from the far-ultraviolet (FUV) to the far-infrared (FIR)