ﻻ يوجد ملخص باللغة العربية
We combine the Shark semi-analytic model of galaxy formation with the ProSpect software tool for spectral energy distribution (SED) generation to study the multi-wavelength emission of galaxies from the far-ultraviolet (FUV) to the far-infrared (FIR) at $0le zle 10$. We produce a physical model for the attenuation of galaxies across cosmic time by combining a local Universe empirical relation to compute the dust mass of galaxies from their gas metallicity and mass, attenuation curves derived from radiative transfer calculations of galaxies in the EAGLE hydrodynamic simulation suite, and the properties of Shark galaxies. We are able to produce a wide range of galaxies, from the $z=8$ star-forming galaxies with almost no extinction, $z=2$ submillimeter galaxies, down to the normal star-forming and red sequence galaxies at $z=0$. Quantitatively, we find that Shark reproduces the observed (i) the $z=0$ FUV-to-FIR, (ii) $0le zle 3$ rest-frame $K$-band, and (iii) $0le zle 10$ rest-frame FUV luminosity functions, (iv) $zle 8$ UV slopes, (v) the FUV-to-FIR number counts (including the widely disputed 850$mu$m), (vi) redshift distribution of bright $850mu$m galaxies and (vii) the integrated cosmic SED from $z=0$ to $z=1$ to an unprecedented level. This is achieved without the need to invoke changes in the stellar initial mass function, dust-to-metal mass ratio, or metal enrichment timescales. Our model predicts star formation in galaxy disks to dominate in the FUV-to-optical, while bulges dominate at the NIR at all redshifts. The FIR sees a strong evolution in which disks dominate at $zle 1$ and starbursts (triggered by both galaxy mergers and disk instabilities, in an even mix) dominate at higher redshifts, even out to $z=10$.
We report on a Hubble Space Telescope search for rest-frame ultraviolet emission from the host galaxies of five far-infrared-luminous $zsimeq{}6$ quasars and the $z=5.85$ hot-dust free quasar SDSS J0005-0006. We perform 2D surface brightness modeling
The diffuse far-ultraviolet (FUV) background has received considerable attention from astronomers since the seventies. The initial impetus came from the hope of detecting UV radiation from the hot intergalactic medium. The central importance of the F
We investigate the evolution of far-IR CO emission from protostars observed with Herschel/PACS for 50 sources from the combined sample of HOPS and DIGIT Herschel key programs. From the uniformly sampled spectral energy distributions, we computed $L_{
We present the far-ultraviolet (FUV) fluorescent molecular hydrogen (H_2) emission map of the Milky Way Galaxy obtained with FIMS/SPEAR covering ~76% of the sky. The extinction-corrected intensity of the fluorescent H_2 emission has a strong linear c
We have used FMOS on Subaru to obtain near-infrared spectroscopy of 123 far-infrared selected galaxies in COSMOS and obtain the key rest-frame optical emission lines. This is the largest sample of infrared galaxies with near-infrared spectroscopy at