ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing galaxy formation in semi-analytic models and hydrodynamical simulations

67   0   0.0 ( 0 )
 نشر من قبل Peter Mitchell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is now possible for hydrodynamical simulations to reproduce a representative galaxy population. Accordingly, it is timely to assess critically some of the assumptions of traditional semi-analytic galaxy formation models. We use the Eagle simulations to assess assumptions built into the Galform semi-analytic model, focussing on those relating to baryon cycling, angular momentum and feedback. We show that the assumption in Galform that newly formed stars have the same specific angular momentum as the total disc leads to a significant overestimate of the total stellar specific angular momentum of disc galaxies. In Eagle, stars form preferentially out of low specific angular momentum gas in the interstellar medium (ISM) due to the assumed gas density threshold for stars to form, leading to more realistic galaxy sizes. We find that stellar mass assembly is similar between Galform and Eagle but that the evolution of gas properties is different, with various indications that the rate of baryon cycling in Eagle is slower than is assumed in Galform. Finally, by matching individual galaxies between Eagle and Galform, we find that an artificial dependence of AGN feedback and gas infall rates on halo mass doubling events in Galform drives most of the scatter in stellar mass between individual objects. Put together our results suggest that the Galform semi-analytic model can be significantly improved in light of recent advances.



قيم البحث

اقرأ أيضاً

Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the tec hnique developed by Cooper et al. (which we call STINGS here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by <10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.
We investigate the dynamical evolution of galaxies in groups with different formation epochs. Galaxy groups have been selected to be in different dynamical states, namely dynamically old and dynamically young, which reflect their early and late forma tion times, respectively, based on their halo mass assembly. Brightest galaxies in dynamically young groups have suffered their last major galaxy merger typically $sim 2$ Gyr more recently than their counterparts in dynamically old groups. Furthermore, we study the evolution of velocity dispersion in these two classes and compare them with the analytic models of isolated halos. The velocity dispersion of dwarf galaxies in high mass, dynamically young groups increases slowly in time, while the analogous dispersion in dynamically old high-mass groups is constant. In contrast, the velocity dispersion of giant galaxies in low mass groups decreases rapidly at late times. This increasing velocity bias is caused by dynamical friction, and starts much earlier in the dynamically old groups. The recent {sc Radio-SAGE} model of galaxy formation suggests that radio luminosities of central galaxies, considered to be tracers of AGN activity, are enhanced in halos that assembled more recently, independent of the time since the last major merger.
We present a direct comparison between the observed star formation rate functions (SFRF) and the state-of-the-art predictions of semi-analytic models (SAM) of galaxy formation and evolution. We use the PACS Evolutionary Probe Survey (PEP) and Hersche l Multi-tiered Extragalactic Survey (HerMES) data-sets in the COSMOS and GOODS-South fields, combined with broad-band photometry from UV to sub-mm, to obtain total (IR+UV) instantaneous star formation rates (SFRs) for individual Herschel galaxies up to z~4, subtracted of possible active galactic nucleus (AGN) contamination. The comparison with model predictions shows that SAMs broadly reproduce the observed SFRFs up to z~2, when the observational errors on the SFR are taken into account. However, all the models seem to under-predict the bright-end of the SFRF at z>2. The cause of this underprediction could lie in an improper modelling of several model ingredients, like too strong (AGN or stellar) feedback in the brighter objects or too low fall-back of gas, caused by weak feedback and outflows at earlier epochs.
135 - C. J. Short , P. A. Thomas 2009
We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al. (2008), who arrived at the same conclusion on the basis of purely semi-analytic reasoning.
Cosmological hydrodynamical simulations are rich tools to understand the build-up of stellar mass and angular momentum in galaxies, but require some level of calibration to observations. We compare predictions at $zsim0$ from the Eagle, Hydrangea, Ho rizon-AGN, and Magneticum simulations with integral field spectroscopic (IFS) data from the SAMI Galaxy Survey, ATLAS3D, CALIFA and MASSIVE surveys. The main goal of this work is to simultaneously compare structural, dynamical, and stellar population measurements in order to identify key areas of success and tension. We have taken great care to ensure that our simulated measurement methods match the observational methods as closely as possible. We find that the Eagle and Hydrangea simulations reproduce many galaxy relations but with some offsets at high stellar masses. There are moderate mismatches in $R_e$ (+), $epsilon$ (-), $sigma_e$ (-), and mean stellar age (+), where a plus sign indicates that quantities are too high on average, and minus sign too low. The Horizon-AGN simulations qualitatively reproduce several galaxy relations, but there are a number of properties where we find a quantitative offset to observations. Massive galaxies are better matched to observations than galaxies at low and intermediate masses. Overall, we find mismatches in $R_e$ (+), $epsilon$ (-), $sigma_e$ (-) and $(V/sigma)_e$ (-). Magneticum matches observations well: this is the only simulation where we find ellipticities typical for disk galaxies, but there are moderate differences in $sigma_e$ (-), $(V/sigma)_e$ (-) and mean stellar age (+). Our comparison between simulations and observational data has highlighted several areas for improvement, such as the need for improved modelling resulting in a better vertical disk structure, yet our results demonstrate the vast improvement of cosmological simulations in recent years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا