ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonadiabatic effects in the double ionization of atoms driven by a circularly polarized laser pulse

368   0   0.0 ( 0 )
 نشر من قبل Jonathan Dubois Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the double ionization of atoms subjected to circularly polarized (CP) laser pulses. We analyze two fundamental ionization processes: the sequential (SDI) and non-sequential (NSDI) double ionization in the light of the rotating frame (RF) which naturally embeds nonadiabatic effects in CP pulses. We use and compare two adiabatic approximations: The adiabatic approximation in the laboratory frame (LF) and the adiabatic approximation in the RF. The adiabatic approximation in the RF encapsulates the energy variations of the electrons on subcycle timescales happening in the LF and this, by fully taking into account the ion-electron interaction. This allows us to identify two nonadiabatic effects including the lowering of the threshold intensity at which over-the-barrier ionization happens and the lowering of the ionization time of the electrons. As a consequence, these nonadiabatic effects facilitate over-the-barrier ionization and recollision-induced ionizations. We analyze the outcomes of these nonadiabatic effects on the recollision mechanism. We show that the laser envelope plays an instrumental role in a recollision channel in CP pulses at the heart of NSDI.

قيم البحث

اقرأ أيضاً

Increasing ellipticity usually suppresses the recollision probability drastically. In contrast, we report on a recollision channel with large return energy and a substantial probability, regardless of the ellipticity. The laser envelope plays a domin ant role in the energy gained by the electron, and in the conditions under which the electron comes back to the core. We show that this recollision channel eciently triggers multiple ionization with an elliptically polarized pulse.
We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields an d shows a knee-like structure as function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar$^+$.
285 - Phay J. Ho , J. H. Eberly 2005
We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities $10^{14}-10^{16} W/cm^2$ for the laser wavel ength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back-analysis.
140 - Siqiang Luo , Min Li , Wenhai Xie 2019
Based on the strong-field approximation, we obtain analytical expressions for the initial momentum at the tunnel exit and instantaneous ionization rate of tunneling ionization in elliptically polarized laser fields with arbitrary ellipticity. The tun neling electron reveals a nonzero offset of the initial momentum at the tunnel exit in the elliptically polarized laser field. We find that the transverse and longitudinal components of this momentum offset with respect to the instantaneous field direction are directly related to the time derivatives of the instantaneous laser electric field along the angular and radial directions, respectively. We further show that the nonzero initial momentum at the tunnel exit has a significant influence on the laser phase dependence of the instantaneous ionization rate in the nonadiabatic tunneling regime.
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr ibutions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا