ترغب بنشر مسار تعليمي؟ اضغط هنا

Exit momentum and instantaneous ionization rate of nonadiabatic tunneling ionization in elliptically polarized laser fields

141   0   0.0 ( 0 )
 نشر من قبل Min Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the strong-field approximation, we obtain analytical expressions for the initial momentum at the tunnel exit and instantaneous ionization rate of tunneling ionization in elliptically polarized laser fields with arbitrary ellipticity. The tunneling electron reveals a nonzero offset of the initial momentum at the tunnel exit in the elliptically polarized laser field. We find that the transverse and longitudinal components of this momentum offset with respect to the instantaneous field direction are directly related to the time derivatives of the instantaneous laser electric field along the angular and radial directions, respectively. We further show that the nonzero initial momentum at the tunnel exit has a significant influence on the laser phase dependence of the instantaneous ionization rate in the nonadiabatic tunneling regime.



قيم البحث

اقرأ أيضاً

Employing recent developed magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) combining cold atom, strong laser pulse, and ultrafast technologies, we study momentum distributions of the multiply ionized cold rubidium (Rb) induced by the elliptically polarized laser pulses (35 fs, $1.3 times 10^{15}$ W/cm$^2$). The complete vector momenta of Rbn+ ions up to charge state n = 4 are recorded with extremely high resolution (0.12 a.u. for Rb$^+$). Variations of characteristic multi-bands displayed in momentum distributions, as the ellipticity varies from the linear to circular polarization, are interpreted qualitatively with the classical over-barrier ionization model. Present momentum spectroscopy of cold heavy alkali atoms presents novel strong-field phenomena beyond the noble gases.
The role of Coulomb focusing in above-threshold ionization in an elliptically polarized mid-infrared strong laser field is investigated within a semiclassical model incorporating tunneling and Coulomb field effects. It is shown that Coulomb focusing up to moderate ellipticity values is dominated by multiple forward scattering of the ionized electron by the atomic core that creates a characteristic low-energy structure in the photoelectron spectrum and is responsible for the peculiar energy scaling of the ionization normalized yield along the major polarization axis. At higher ellipticities, the electron continuum dynamics is disturbed by the Coulomb field effect mostly at the exit of the ionization tunnel. Due to the latter, the normalized yield is found to be enhanced, with the enhancement factor being sharply pronounced at intermediate ellipticities.
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr ibutions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.
367 - J. Dubois , C. Chandre , T. Uzer 2020
We study the double ionization of atoms subjected to circularly polarized (CP) laser pulses. We analyze two fundamental ionization processes: the sequential (SDI) and non-sequential (NSDI) double ionization in the light of the rotating frame (RF) whi ch naturally embeds nonadiabatic effects in CP pulses. We use and compare two adiabatic approximations: The adiabatic approximation in the laboratory frame (LF) and the adiabatic approximation in the RF. The adiabatic approximation in the RF encapsulates the energy variations of the electrons on subcycle timescales happening in the LF and this, by fully taking into account the ion-electron interaction. This allows us to identify two nonadiabatic effects including the lowering of the threshold intensity at which over-the-barrier ionization happens and the lowering of the ionization time of the electrons. As a consequence, these nonadiabatic effects facilitate over-the-barrier ionization and recollision-induced ionizations. We analyze the outcomes of these nonadiabatic effects on the recollision mechanism. We show that the laser envelope plays an instrumental role in a recollision channel in CP pulses at the heart of NSDI.
The tunneling ionization of exotic atoms such as muonic hydrogen, muonium and positronium in a strong laser field of circular polarization is investigated taking into account the impact of the motion of the center of mass on the the tunneling ionizat ion dynamics. The momentum partition between the ionization products is deduced. The effect of the center of mass motion for the momentum distribution of the ionization components is determined. The effect scales with the ratio of the electron (muon) to the atomic core masses and is nonnegligible for exotic atoms, while being insignificant for common atoms. It is shown that the electron (muon) momentum shift during the under-the-barrier motion due to the magnetically induced Lorentz force has a significant impact on the momentum distribution of the atomic core and depends on the ratio of the electron to the atomic core masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا