ﻻ يوجد ملخص باللغة العربية
A coarse-grained model is developed to allow large-scale molecular dynamics (MD) simulations of a branched polyetherimide derived from two backbone monomers [4,4-bisphenol A dianhydride (BPADA) and m-phenylenediamine (MPD)], a chain terminator [phthalic anhydride (PA)], and a branching agent [tris[4-(4-aminophenoxy)phenyl] ethane (TAPE)]. An atomistic model is first built for the branched polyetherimide. A systematic protocol based on chemistry-informed grouping of atoms, derivation of bond and angle interactions by direct Boltzmann inversion, and parameterization of nonbonded interactions by potential of mean force (PMF) calculations via gas-phase MD simulations of atomic group pairs, is used to construct the coarse-grained model. A six-pair geometry, with one atomic group at the center and six replicates of the other atomic group placed surrounding the central group in a NaCl structure, has been demonstrated to significantly speed up the PMF calculations and partially capture the many-body aspect of the PMFs. Furthermore, we propose a correction term to the PMFs that can make the resulting coarse-grained model transferable temperature-wise, by enabling the model to capture the thermal expansion property of the polymer. The coarse-grained model has been applied to explore the mechanical, structural, and rheological properties of the branched polyetherimide.
The nucleation of cavities in a homogenous polymer under tensile strain is investigated in a coarse-grained molecular dynamics simulation. In order to establish a causal relation between local microstructure and the onset of cavitation, a detailed an
A first-principle multiscale modeling approach is presented, which is derived from the solution of the Ornstein-Zernike equation for the coarse-grained representation of polymer liquids. The approach is analytical, and for this reason is transferable
Atomistic or ab-initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expen
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that th
The phase-field crystal model in its amplitude equation approximation is shown to provide an accurate description of the deformation field in defected crystalline structures, as well as of dislocation motion. We analyze in detail the elastic distorti