ترغب بنشر مسار تعليمي؟ اضغط هنا

Latent Bandits Revisited

170   0   0.0 ( 0 )
 نشر من قبل Joey Hong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A latent bandit problem is one in which the learning agent knows the arm reward distributions conditioned on an unknown discrete latent state. The primary goal of the agent is to identify the latent state, after which it can act optimally. This setting is a natural midpoint between online and offline learning---complex models can be learned offline with the agent identifying latent state online---of practical relevance in, say, recommender systems. In this work, we propose general algorithms for this setting, based on both upper confidence bounds (UCBs) and Thompson sampling. Our methods are contextual and aware of model uncertainty and misspecification. We provide a unified theoretical analysis of our algorithms, which have lower regret than classic bandit policies when the number of latent states is smaller than actions. A comprehensive empirical study showcases the advantages of our approach.

قيم البحث

اقرأ أيضاً

Users of recommender systems often behave in a non-stationary fashion, due to their evolving preferences and tastes over time. In this work, we propose a practical approach for fast personalization to non-stationary users. The key idea is to frame th is problem as a latent bandit, where the prototypical models of user behavior are learned offline and the latent state of the user is inferred online from its interactions with the models. We call this problem a non-stationary latent bandit. We propose Thompson sampling algorithms for regret minimization in non-stationary latent bandits, analyze them, and evaluate them on a real-world dataset. The main strength of our approach is that it can be combined with rich offline-learned models, which can be misspecified, and are subsequently fine-tuned online using posterior sampling. In this way, we naturally combine the strengths of offline and online learning.
We study linear contextual bandits with access to a large, confounded, offline dataset that was sampled from some fixed policy. We show that this problem is closely related to a variant of the bandit problem with side information. We construct a line ar bandit algorithm that takes advantage of the projected information, and prove regret bounds. Our results demonstrate the ability to take advantage of confounded offline data. Particularly, we prove regret bounds that improve current bounds by a factor related to the visible dimensionality of the contexts in the data. Our results indicate that confounded offline data can significantly improve online learning algorithms. Finally, we demonstrate various characteristics of our approach through synthetic simulations.
We consider the problem of sequentially allocating resources in a censored semi-bandits setup, where the learner allocates resources at each step to the arms and observes loss. The loss depends on two hidden parameters, one specific to the arm but in dependent of the resource allocation, and the other depends on the allocated resource. More specifically, the loss equals zero for an arm if the resource allocated to it exceeds a constant (but unknown) arm dependent threshold. The goal is to learn a resource allocation that minimizes the expected loss. The problem is challenging because the loss distribution and threshold value of each arm are unknown. We study this setting by establishing its `equivalence to Multiple-Play Multi-Armed Bandits (MP-MAB) and Combinatorial Semi-Bandits. Exploiting these equivalences, we derive optimal algorithms for our problem setting using known algorithms for MP-MAB and Combinatorial Semi-Bandits. The experiments on synthetically generated data validate the performance guarantees of the proposed algorithms.
We consider a continuous-time multi-arm bandit problem (CTMAB), where the learner can sample arms any number of times in a given interval and obtain a random reward from each sample, however, increasing the frequency of sampling incurs an additive pe nalty/cost. Thus, there is a tradeoff between obtaining large reward and incurring sampling cost as a function of the sampling frequency. The goal is to design a learning algorithm that minimizes regret, that is defined as the difference of the payoff of the oracle policy and that of the learning algorithm. CTMAB is fundamentally different than the usual multi-arm bandit problem (MAB), e.g., even the single-arm case is non-trivial in CTMAB, since the optimal sampling frequency depends on the mean of the arm, which needs to be estimated. We first establish lower bounds on the regret achievable with any algorithm and then propose algorithms that achieve the lower bound up to logarithmic factors. For the single-arm case, we show that the lower bound on the regret is $Omega((log T)^2/mu)$, where $mu$ is the mean of the arm, and $T$ is the time horizon. For the multiple arms case, we show that the lower bound on the regret is $Omega((log T)^2 mu/Delta^2)$, where $mu$ now represents the mean of the best arm, and $Delta$ is the difference of the mean of the best and the second-best arm. We then propose an algorithm that achieves the bound up to constant terms.
This work is aiming to discuss and close some of the gaps in the literature on models using options (and more generally coagents). Briefly surveying the theory behind these models, it also aims to provide a unifying point of view on the many diverse examples that fall under a same category called coagent network. Motivated by the result of [10] on parameter sharing of options, we revisit the theory of (a)synchronous Coagent Network [8] by generalizing the result to the context where parameters are shared among the function approximators of coagents. The proof is more intuitive and uses the concept of execution paths in a coagent network. Theoretically, this informs us of some necessary modifications to the algorithms found in the literature which make them more mathematically accurate. It also allows us to introduce a new simple option framework, Feedforward Option Network, which outperforms the previous option models in time to convergence and stability in the famous nonstationary Four Rooms task. In addition, a stabilization effect is observed in hierarchical models which justify the unnecessity of the target network in training such models. Finally, we publish our code which allows us to be flexible in our experiments settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا