ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandits with Partially Observable Confounded Data

65   0   0.0 ( 0 )
 نشر من قبل Guy Tennenholtz
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study linear contextual bandits with access to a large, confounded, offline dataset that was sampled from some fixed policy. We show that this problem is closely related to a variant of the bandit problem with side information. We construct a linear bandit algorithm that takes advantage of the projected information, and prove regret bounds. Our results demonstrate the ability to take advantage of confounded offline data. Particularly, we prove regret bounds that improve current bounds by a factor related to the visible dimensionality of the contexts in the data. Our results indicate that confounded offline data can significantly improve online learning algorithms. Finally, we demonstrate various characteristics of our approach through synthetic simulations.

قيم البحث

اقرأ أيضاً

This work studies the problem of batch off-policy evaluation for Reinforcement Learning in partially observable environments. Off-policy evaluation under partial observability is inherently prone to bias, with risk of arbitrarily large errors. We def ine the problem of off-policy evaluation for Partially Observable Markov Decision Processes (POMDPs) and establish what we believe is the first off-policy evaluation result for POMDPs. In addition, we formulate a model in which observed and unobserved variables are decoupled into two dynamic processes, called a Decoupled POMDP. We show how off-policy evaluation can be performed under this new model, mitigating estimation errors inherent to general POMDPs. We demonstrate the pitfalls of off-policy evaluation in POMDPs using a well-known off-policy method, Importance Sampling, and compare it with our result on synthetic medical data.
Optimization of parameterized policies for reinforcement learning (RL) is an important and challenging problem in artificial intelligence. Among the most common approaches are algorithms based on gradient ascent of a score function representing disco unted return. In this paper, we examine the role of these policy gradient and actor-critic algorithms in partially-observable multiagent environments. We show several candidate policy update rules and relate them to a foundation of regret minimization and multiagent learning techniques for the one-shot and tabular cases, leading to previously unknown convergence guarantees. We apply our method to model-free multiagent reinforcement learning in adversarial sequential decision problems (zero-sum imperfect information games), using RL-style function approximation. We evaluate on commonly used benchmark Poker domains, showing performance against fixed policies and empirical convergence to approximate Nash equilibria in self-play with rates similar to or better than a baseline model-free algorithm for zero sum games, without any domain-specific state space reductions.
We consider a continuous-time multi-arm bandit problem (CTMAB), where the learner can sample arms any number of times in a given interval and obtain a random reward from each sample, however, increasing the frequency of sampling incurs an additive pe nalty/cost. Thus, there is a tradeoff between obtaining large reward and incurring sampling cost as a function of the sampling frequency. The goal is to design a learning algorithm that minimizes regret, that is defined as the difference of the payoff of the oracle policy and that of the learning algorithm. CTMAB is fundamentally different than the usual multi-arm bandit problem (MAB), e.g., even the single-arm case is non-trivial in CTMAB, since the optimal sampling frequency depends on the mean of the arm, which needs to be estimated. We first establish lower bounds on the regret achievable with any algorithm and then propose algorithms that achieve the lower bound up to logarithmic factors. For the single-arm case, we show that the lower bound on the regret is $Omega((log T)^2/mu)$, where $mu$ is the mean of the arm, and $T$ is the time horizon. For the multiple arms case, we show that the lower bound on the regret is $Omega((log T)^2 mu/Delta^2)$, where $mu$ now represents the mean of the best arm, and $Delta$ is the difference of the mean of the best and the second-best arm. We then propose an algorithm that achieves the bound up to constant terms.
This paper studies a new variant of the stochastic multi-armed bandits problem, where the learner has access to auxiliary information about the arms. The auxiliary information is correlated with the arm rewards, which we treat as control variates. In many applications, the arm rewards are a function of some exogenous values, whose mean value is known a priori from historical data and hence can be used as control variates. We use the control variates to obtain mean estimates with smaller variance and tighter confidence bounds. We then develop an algorithm named UCB-CV that uses improved estimates. We characterize the regret bounds in terms of the correlation between the rewards and control variates. The experiments on synthetic data validate the performance guarantees of our proposed algorithm.
Reinforcement Learning (RL) agents typically learn memoryless policies---policies that only consider the last observation when selecting actions. Learning memoryless policies is efficient and optimal in fully observable environments. However, some fo rm of memory is necessary when RL agents are faced with partial observability. In this paper, we study a lightweight approach to tackle partial observability in RL. We provide the agent with an external memory and additional actions to control what, if anything, is written to the memory. At every step, the current memory state is part of the agents observation, and the agent selects a tuple of actions: one action that modifies the environment and another that modifies the memory. When the external memory is sufficiently expressive, optimal memoryless policies yield globally optimal solutions. Unfortunately, previous attempts to use external memory in the form of binary memory have produced poor results in practice. Here, we investigate alternative forms of memory in support of learning effective memoryless policies. Our novel forms of memory outperform binary and LSTM-based memory in well-established partially observable domains.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا