ﻻ يوجد ملخص باللغة العربية
We compare the statistics and morphology of giant arcs in galaxy clusters using N-body and non-radiative SPH simulations within the standard cold dark matter model and simulations where dark matter has a non-negligible probability of interaction (parametrized by its cross-section), i.e self-interacting dark matter (SIDM). We use a ray-tracing technique to produce a statistically large number of arcs around six simulated galaxy clusters at different redshifts. Since dark matter is more likely to interact in colliding clusters than in relaxed clusters, and this probability of interaction is largest in denser regions, we focus our analysis on radial arcs (which trace the lensing potential in the central region better than tangential arcs) in galaxy clusters which underwent (or are undergoing) a major merger. We find that self-interacting dark matter produces fewer radial arcs than standard cold dark matter but they are on average more magnified. We also appreciate differences in the arc morphology that could be used to statistically favor one model versus the other.
We develop a statistical method to measure the interaction cross-section of Dark Matter, exploiting the continuous minor merger events in which small substructures fall into galaxy clusters. We find that by taking the ratio of the distances between t
We assess how much unused strong lensing information is available in the deep emph{Hubble Space Telescope} imaging and VLT/MUSE spectroscopy of the emph{Frontier Field} clusters. As a pilot study, we analyse galaxy cluster MACS,J0416.1-2403 ($z$$=$$0
We determine the inner density profiles of massive galaxy clusters (M$_{200}$ > $5 times 10^{14}$ M$_{odot}$) in the Cluster-EAGLE (C-EAGLE) hydrodynamic simulations, and investigate whether the dark matter density profiles can be correctly estimated
Using the self-consistent modeling of the conditional stellar mass functions across cosmic time by Yang et al. (2012), we make model predictions for the star formation histories (SFHs) of {it central} galaxies in halos of different masses. The model
I summarize the recent advances in determining the effects of self-annihilating WIMP dark matter on the modification of the recombination history, at times earlier than the formation of astrophysical objects. Depending on mass and self-annihilation c