ﻻ يوجد ملخص باللغة العربية
We develop a statistical method to measure the interaction cross-section of Dark Matter, exploiting the continuous minor merger events in which small substructures fall into galaxy clusters. We find that by taking the ratio of the distances between the galaxies and Dark Matter, and galaxies and gas in accreting sub-halos, we form a quantity that can be statistically averaged over a large sample of systems whilst removing any inherent line-of-sight projections. In order to interpret this ratio as a cross-section of Dark Matter we derive an analytical description of sub-halo infall which encompasses; the force of the main cluster potential, the drag on a gas sub-halo, a model for Dark Matter self-interactions and the resulting sub-halo drag, the force on the gas and galaxies due to the Dark Matter sub-halo potential, and finally the buoyancy on the gas and Dark Matter. We create mock observations from cosmological simulations of structure formation and find that collisionless Dark Matter becomes physically separated from X-ray gas by up to 20h^-1 kpc. Adding realistic levels of noise, we are able to predict achievable constraints from observational data. Current archival data should be able to detect a difference in the dynamical behaviour of Dark Matter and standard model particles at 6 sigma, and measure the total interaction cross-section sigma/m with 68% confidence limits of +/- 1cm2g^-1. We note that this method is not restricted by the limited number of major merging events and is easily extended to large samples of clusters from future surveys which could potentially push statistical errors to 0.1cm^2g^-1.
We compare the statistics and morphology of giant arcs in galaxy clusters using N-body and non-radiative SPH simulations within the standard cold dark matter model and simulations where dark matter has a non-negligible probability of interaction (par
It is of great interest to measure the properties of substructures in dark matter halos at galactic and cluster scales. Here we suggest a method to constrain substructure properties using the variance of weak gravitational flexion in a galaxy-galaxy
We derive a model for Sunyaev--Zeldovich data from a galaxy cluster which uses an Einasto profile to model the clusters dark matter component. This model is similar to the physical models for clusters previously used by the Arcminute Microkelvin Imag
We consider the dynamics in and near galaxy clusters. Gas, dark matter and galaxies are presently falling into the clusters between approximately 1 and 5 virial radii. At very large distances, beyond 10 virial radii, all matter is following the Hubbl
We use the Copernicus Complexio (COCO) high resolution $N$-body simulations to investigate differences in the properties of small-scale structures in the standard cold dark matter (CDM) model and in a model with a cutoff in the initial power spectrum