ترغب بنشر مسار تعليمي؟ اضغط هنا

Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent

74   0   0.0 ( 0 )
 نشر من قبل Shuang Song
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the well-studied problem of differentially private empirical risk minimization (ERM). We show that for unconstrained convex generalized linear models (GLMs), one can obtain an excess empirical risk of $tilde Oleft(sqrt{{texttt{rank}}}/epsilon nright)$, where ${texttt{rank}}$ is the rank of the feature matrix in the GLM problem, $n$ is the number of data samples, and $epsilon$ is the privacy parameter. This bound is attained via differentially private gradient descent (DP-GD). Furthermore, via the first lower bound for unconstrained private ERM, we show that our upper bound is tight. In sharp contrast to the constrained ERM setting, there is no dependence on the dimensionality of the ambient model space ($p$). (Notice that ${texttt{rank}}leq min{n, p}$.) Besides, we obtain an analogous excess population risk bound which depends on ${texttt{rank}}$ instead of $p$. For the smooth non-convex GLM setting (i.e., where the objective function is non-convex but preserves the GLM structure), we further show that DP-GD attains a dimension-independent convergence of $tilde Oleft(sqrt{{texttt{rank}}}/epsilon nright)$ to a first-order-stationary-point of the underlying objective. Finally, we show that for convex GLMs, a variant of DP-GD commonly used in practice (which involves clipping the individual gradients) also exhibits the same dimension-independent convergence to the minimum of a well-defined objective. To that end, we provide a structural lemma that characterizes the effect of clipping on the optimization profile of DP-GD.

قيم البحث

اقرأ أيضاً

Federated learning enables multiple, distributed participants (potentially on different clouds) to collaborate and train machine/deep learning models by sharing parameters/gradients. However, sharing gradients, instead of centralizing data, may not b e as private as one would expect. Reverse engineering attacks on plaintext gradients have been demonstrated to be practically feasible. Existing solutions for differentially private federated learning, while promising, lead to less accurate models and require nontrivial hyperparameter tuning. In this paper, we examine the use of additive homomorphic encryption (specifically the Paillier cipher) to design secure federated gradient descent techniques that (i) do not require addition of statistical noise or hyperparameter tuning, (ii) does not alter the final accuracy or utility of the final model, (iii) ensure that the plaintext model parameters/gradients of a participant are never revealed to any other participant or third party coordinator involved in the federated learning job, (iv) minimize the trust placed in any third party coordinator and (v) are efficient, with minimal overhead, and cost effective.
We consider the problem of empirical risk minimization given a database, using the gradient descent algorithm. We note that the function to be optimized may be non-convex, consisting of saddle points which impede the convergence of the algorithm. A p erturbed gradient descent algorithm is typically employed to escape these saddle points. We show that this algorithm, that perturbs the gradient, inherently preserves the privacy of the data. We then employ the differential privacy framework to quantify the privacy hence achieved. We also analyze the change in privacy with varying parameters such as problem dimension and the distance between the databases.
107 - Lichao Sun , Yingbo Zhou , Ji Wang 2019
Privacy-preserving deep learning is crucial for deploying deep neural network based solutions, especially when the model works on data that contains sensitive information. Most privacy-preserving methods lead to undesirable performance degradation. E nsemble learning is an effective way to improve model performance. In this work, we propose a new method for teacher ensembles that uses more informative network outputs under differential private stochastic gradient descent and provide provable privacy guarantees. Out method employs knowledge distillation and hint learning on intermediate representations to facilitate the training of student model. Additionally, we propose a simple weighted ensemble scheme that works more robustly across different teaching settings. Experimental results on three common image datasets benchmark (i.e., CIFAR10, MINST, and SVHN) demonstrate that our approach outperforms previous state-of-the-art methods on both performance and privacy-budget.
336 - Lei Yu , Ling Liu , Calton Pu 2019
Deep learning techniques based on neural networks have shown significant success in a wide range of AI tasks. Large-scale training datasets are one of the critical factors for their success. However, when the training datasets are crowdsourced from i ndividuals and contain sensitive information, the model parameters may encode private information and bear the risks of privacy leakage. The recent growing trend of the sharing and publishing of pre-trained models further aggravates such privacy risks. To tackle this problem, we propose a differentially private approach for training neural networks. Our approach includes several new techniques for optimizing both privacy loss and model accuracy. We employ a generalization of differential privacy called concentrated differential privacy(CDP), with both a formal and refined privacy loss analysis on two different data batching methods. We implement a dynamic privacy budget allocator over the course of training to improve model accuracy. Extensive experiments demonstrate that our approach effectively improves privacy loss accounting, training efficiency and model quality under a given privacy budget.
We study the basic operation of set union in the global model of differential privacy. In this problem, we are given a universe $U$ of items, possibly of infinite size, and a database $D$ of users. Each user $i$ contributes a subset $W_i subseteq U$ of items. We want an ($epsilon$,$delta$)-differentially private algorithm which outputs a subset $S subset cup_i W_i$ such that the size of $S$ is as large as possible. The problem arises in countless real world applications; it is particularly ubiquitous in natural language processing (NLP) applications as vocabulary extraction. For example, discovering words, sentences, $n$-grams etc., from private text data belonging to users is an instance of the set union problem. Known algorithms for this problem proceed by collecting a subset of items from each user, taking the union of such subsets, and disclosing the items whose noisy counts fall above a certain threshold. Crucially, in the above process, the contribution of each individual user is always independent of the items held by other users, resulting in a wasteful aggregation process, where some item counts happen to be way above the threshold. We deviate from the above paradigm by allowing users to contribute their items in a $textit{dependent fashion}$, guided by a $textit{policy}$. In this new setting ensuring privacy is significantly delicate. We prove that any policy which has certain $textit{contractive}$ properties would result in a differentially private algorithm. We design two new algorithms, one using Laplace noise and other Gaussian noise, as specific instances of policies satisfying the contractive properties. Our experiments show that the new algorithms significantly outperform previously known mechanisms for the problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا