ترغب بنشر مسار تعليمي؟ اضغط هنا

Private Deep Learning with Teacher Ensembles

108   0   0.0 ( 0 )
 نشر من قبل Lichao Sun
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Privacy-preserving deep learning is crucial for deploying deep neural network based solutions, especially when the model works on data that contains sensitive information. Most privacy-preserving methods lead to undesirable performance degradation. Ensemble learning is an effective way to improve model performance. In this work, we propose a new method for teacher ensembles that uses more informative network outputs under differential private stochastic gradient descent and provide provable privacy guarantees. Out method employs knowledge distillation and hint learning on intermediate representations to facilitate the training of student model. Additionally, we propose a simple weighted ensemble scheme that works more robustly across different teaching settings. Experimental results on three common image datasets benchmark (i.e., CIFAR10, MINST, and SVHN) demonstrate that our approach outperforms previous state-of-the-art methods on both performance and privacy-budget.



قيم البحث

اقرأ أيضاً

336 - Lei Yu , Ling Liu , Calton Pu 2019
Deep learning techniques based on neural networks have shown significant success in a wide range of AI tasks. Large-scale training datasets are one of the critical factors for their success. However, when the training datasets are crowdsourced from i ndividuals and contain sensitive information, the model parameters may encode private information and bear the risks of privacy leakage. The recent growing trend of the sharing and publishing of pre-trained models further aggravates such privacy risks. To tackle this problem, we propose a differentially private approach for training neural networks. Our approach includes several new techniques for optimizing both privacy loss and model accuracy. We employ a generalization of differential privacy called concentrated differential privacy(CDP), with both a formal and refined privacy loss analysis on two different data batching methods. We implement a dynamic privacy budget allocator over the course of training to improve model accuracy. Extensive experiments demonstrate that our approach effectively improves privacy loss accounting, training efficiency and model quality under a given privacy budget.
We consider training models with differential privacy (DP) using mini-batch gradients. The existing state-of-the-art, Differentially Private Stochastic Gradient Descent (DP-SGD), requires privacy amplification by sampling or shuffling to obtain the b est privacy/accuracy/computation trade-offs. Unfortunately, the precise requirements on exact sampling and shuffling can be hard to obtain in important practical scenarios, particularly federated learning (FL). We design and analyze a DP variant of Follow-The-Regularized-Leader (DP-FTRL) that compares favorably (both theoretically and empirically) to amplified DP-SGD, while allowing for much more flexible data access patterns. DP-FTRL does not use any form of privacy amplification. The code is available at https://github.com/google-research/federated/tree/master/dp_ftrl and https://github.com/google-research/DP-FTRL .
332 - Yufei Chen , Chao Shen , Cong Wang 2021
Transfer learning has become a common solution to address training data scarcity in practice. It trains a specified student model by reusing or fine-tuning early layers of a well-trained teacher model that is usually publicly available. However, besi des utility improvement, the transferred public knowledge also brings potential threats to model confidentiality, and even further raises other security and privacy issues. In this paper, we present the first comprehensive investigation of the teacher model exposure threat in the transfer learning context, aiming to gain a deeper insight into the tension between public knowledge and model confidentiality. To this end, we propose a teacher model fingerprinting attack to infer the origin of a student model, i.e., the teacher model it transfers from. Specifically, we propose a novel optimization-based method to carefully generate queries to probe the student model to realize our attack. Unlike existing model reverse engineering approaches, our proposed fingerprinting method neither relies on fine-grained model outputs, e.g., posteriors, nor auxiliary information of the model architecture or training dataset. We systematically evaluate the effectiveness of our proposed attack. The empirical results demonstrate that our attack can accurately identify the model origin with few probing queries. Moreover, we show that the proposed attack can serve as a stepping stone to facilitating other attacks against machine learning models, such as model stealing.
A private machine learning algorithm hides as much as possible about its training data while still preserving accuracy. In this work, we study whether a non-private learning algorithm can be made private by relying on an instance-encoding mechanism t hat modifies the training inputs before feeding them to a normal learner. We formalize both the notion of instance encoding and its privacy by providing two attack models. We first prove impossibility results for achieving a (stronger) model. Next, we demonstrate practical attacks in the second (weaker) attack model on InstaHide, a recent proposal by Huang, Song, Li and Arora [ICML20] that aims to use instance encoding for privacy.
Intuitively, a backdoor attack against Deep Neural Networks (DNNs) is to inject hidden malicious behaviors into DNNs such that the backdoor model behaves legitimately for benign inputs, yet invokes a predefined malicious behavior when its input conta ins a malicious trigger. The trigger can take a plethora of forms, including a special object present in the image (e.g., a yellow pad), a shape filled with custom textures (e.g., logos with particular colors) or even image-wide stylizations with special filters (e.g., images altered by Nashville or Gotham filters). These filters can be applied to the original image by replacing or perturbing a set of image pixels.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا