ترغب بنشر مسار تعليمي؟ اضغط هنا

New general lower and upper bounds under minimum-error quantum state discrimination

292   0   0.0 ( 0 )
 نشر من قبل Elena R. Loubenets
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the optimal success probability under minimum-error discrimination between $rgeq2$ arbitrary quantum states prepared with any a priori probabilities, we find new general analytical lower and upper bounds and specify the relations between these new general bounds and the general bounds known in the literature. We also present the example where the new general analytical bounds, lower and upper, on the optimal success probability are tighter than most of the general analytical bounds known in the literature. The new upper bound on the optimal success probability explicitly generalizes to $r>2$ the form of the Helstrom bound. For $r=2$, each of our new bounds, lower and upper, reduces to the Helstrom bound.



قيم البحث

اقرأ أيضاً

173 - Elena R. Loubenets 2016
Last years, bounds on the maximal quantum violation of general Bell inequalities were intensively discussed in the literature via different mathematical tools. In the present paper, we analyze quantum violation of general Bell inequalities via the Lq HV (local quasi hidden variable) modelling framework, correctly reproducing the probabilistic description of every quantum correlation scenario. The LqHV mathematical framework allows us to derive for all d and N a new upper bound (2d-1)^{N-1} on the maximal violation by an N-qudit state of all general Bell inequalities, also, new upper bounds on the maximal violation by an N-qudit state of general Bell inequalities for S settings per site. These new upper bounds essentially improve all the known precise upper bounds on quantum violation of general multipartite Bell inequalities. For some S, d and N, the new upper bounds are attainable.
205 - Stefano Pirandola 2019
Secure quantum conferencing refers to a protocol where a number of trusted users generate exactly the same secret key to confidentially broadcast private messages. By a modification of the techniques first introduced in [Pirandola, arXiv:1601.00966], we derive a single-letter upper bound for the maximal rates of secure conferencing in a quantum network with arbitrary topology, where the users are allowed to perform the most powerful local operations assisted by two-way classical communications, and the quantum systems are routed according to the most efficient multipath flooding strategies. More precisely, our analysis allows us to bound the ultimate rates that are achievable by single-message multiple-multicast protocols, where N senders distribute N independent secret keys, and each key is to be shared with an ensemble of M receivers.
Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum error discrimination between entangled states, encoded in the polarization of pairs of photons. Alth ough the optimal measurement involves projecting onto entangled states, we use a result of Walgate et al. to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum error discrimination of non-orthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.
Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure. We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimizations problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with $mn$ when $mapprox n$, which is the same as classical.
A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior ex istence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. Finally, we show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا