ﻻ يوجد ملخص باللغة العربية
Fraud review detection is a hot research topic inrecent years. The Cold-start is a particularly new but significant problem referring to the failure of a detection system to recognize the authenticity of a new user. State-of-the-art solutions employ a translational knowledge graph embedding approach (TransE) to model the interaction of the components of a review system. However, these approaches suffer from the limitation of TransEin handling N-1 relations and the narrow scope of a single classification task, i.e., detecting fraudsters only. In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component and performs graph inductive learning on the review data through aggregating features of nearby nodes. HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews. In this research, instead of focusing only on one component, detecting either fraud reviews or fraud users (fraudsters), vector representations are learnt for each component, enabling multi-component classification. In other words, we are able to detect fraud reviews, fraudsters, and fraud-targeted items, thus the name of our approach DFraud3. DFraud3 demonstrates a significant accuracy increase of 13% over the state of the art on Yelp.
Fraud detection is extremely critical for e-commerce business. It is the intent of the companies to detect and prevent fraud as early as possible. Existing fraud detection methods try to identify unexpected dense subgraphs and treat related nodes as
As one of major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender
Payment card fraud causes multibillion dollar losses for banks and merchants worldwide, often fueling complex criminal activities. To address this, many real-time fraud detection systems use tree-based models, demanding complex feature engineering sy
The application of machine learning to support the processing of large datasets holds promise in many industries, including financial services. However, practical issues for the full adoption of machine learning remain with the focus being on underst
Many online applications, such as online social networks or knowledge bases, are often attacked by malicious users who commit different types of actions such as vandalism on Wikipedia or fraudulent reviews on eBay. Currently, most of the fraud detect